forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswivel.py
415 lines (335 loc) · 15.7 KB
/
swivel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python
#
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Submatrix-wise Vector Embedding Learner.
Implementation of SwiVel algorithm described at:
http://arxiv.org/abs/1602.02215
This program expects an input directory that contains the following files.
row_vocab.txt, col_vocab.txt
The row an column vocabulary files. Each file should contain one token per
line; these will be used to generate a tab-separate file containing the
trained embeddings.
row_sums.txt, col_sum.txt
The matrix row and column marginal sums. Each file should contain one
decimal floating point number per line which corresponds to the marginal
count of the matrix for that row or column.
shards.recs
A file containing the sub-matrix shards, stored as TFRecords. Each shard is
expected to be a serialzed tf.Example protocol buffer with the following
properties:
global_row: the global row indicies contained in the shard
global_col: the global column indicies contained in the shard
sparse_local_row, sparse_local_col, sparse_value: three parallel arrays
that are a sparse representation of the submatrix counts.
It will generate embeddings, training from the input directory for the specified
number of epochs. When complete, it will output the trained vectors to a
tab-separated file that contains one line per embedding. Row and column
embeddings are stored in separate files.
"""
from __future__ import print_function
import glob
import math
import os
import sys
import time
import threading
import numpy as np
import tensorflow as tf
from tensorflow.python.client import device_lib
flags = tf.app.flags
flags.DEFINE_string('input_base_path', '/tmp/swivel_data',
'Directory containing input shards, vocabularies, '
'and marginals.')
flags.DEFINE_string('output_base_path', '/tmp/swivel_data',
'Path where to write the trained embeddings.')
flags.DEFINE_integer('embedding_size', 300, 'Size of the embeddings')
flags.DEFINE_boolean('trainable_bias', False, 'Biases are trainable')
flags.DEFINE_integer('submatrix_rows', 4096, 'Rows in each training submatrix. '
'This must match the training data.')
flags.DEFINE_integer('submatrix_cols', 4096, 'Rows in each training submatrix. '
'This must match the training data.')
flags.DEFINE_float('loss_multiplier', 1.0 / 4096,
'constant multiplier on loss.')
flags.DEFINE_float('confidence_exponent', 0.5,
'Exponent for l2 confidence function')
flags.DEFINE_float('confidence_scale', 0.25, 'Scale for l2 confidence function')
flags.DEFINE_float('confidence_base', 0.1, 'Base for l2 confidence function')
flags.DEFINE_float('learning_rate', 1.0, 'Initial learning rate')
flags.DEFINE_integer('num_concurrent_steps', 2,
'Number of threads to train with')
flags.DEFINE_integer('num_readers', 4,
'Number of threads to read the input data and feed it')
flags.DEFINE_float('num_epochs', 40, 'Number epochs to train for')
flags.DEFINE_float('per_process_gpu_memory_fraction', 0,
'Fraction of GPU memory to use, 0 means allow_growth')
flags.DEFINE_integer('num_gpus', 0,
'Number of GPUs to use, 0 means all available')
FLAGS = flags.FLAGS
def log(message, *args, **kwargs):
tf.logging.info(message, *args, **kwargs)
def get_available_gpus():
return [d.name for d in device_lib.list_local_devices()
if d.device_type == 'GPU']
def embeddings_with_init(vocab_size, embedding_dim, name):
"""Creates and initializes the embedding tensors."""
return tf.get_variable(name=name,
shape=[vocab_size, embedding_dim],
initializer=tf.random_normal_initializer(
stddev=math.sqrt(1.0 / embedding_dim)))
def count_matrix_input(filenames, submatrix_rows, submatrix_cols):
"""Reads submatrix shards from disk."""
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64),
'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64),
'sparse_local_row': tf.VarLenFeature(dtype=tf.int64),
'sparse_local_col': tf.VarLenFeature(dtype=tf.int64),
'sparse_value': tf.VarLenFeature(dtype=tf.float32)
})
global_row = features['global_row']
global_col = features['global_col']
sparse_local_row = features['sparse_local_row'].values
sparse_local_col = features['sparse_local_col'].values
sparse_count = features['sparse_value'].values
sparse_indices = tf.concat(axis=1, values=[tf.expand_dims(sparse_local_row, 1),
tf.expand_dims(sparse_local_col, 1)])
count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols],
sparse_count)
queued_global_row, queued_global_col, queued_count = tf.train.batch(
[global_row, global_col, count],
batch_size=1,
num_threads=FLAGS.num_readers,
capacity=32)
queued_global_row = tf.reshape(queued_global_row, [submatrix_rows])
queued_global_col = tf.reshape(queued_global_col, [submatrix_cols])
queued_count = tf.reshape(queued_count, [submatrix_rows, submatrix_cols])
return queued_global_row, queued_global_col, queued_count
def read_marginals_file(filename):
"""Reads text file with one number per line to an array."""
with open(filename) as lines:
return [float(line) for line in lines]
def write_embedding_tensor_to_disk(vocab_path, output_path, sess, embedding):
"""Writes tensor to output_path as tsv"""
# Fetch the embedding values from the model
embeddings = sess.run(embedding)
with open(output_path, 'w') as out_f:
with open(vocab_path) as vocab_f:
for index, word in enumerate(vocab_f):
word = word.strip()
embedding = embeddings[index]
out_f.write(word + '\t' + '\t'.join([str(x) for x in embedding]) + '\n')
def write_embeddings_to_disk(config, model, sess):
"""Writes row and column embeddings disk"""
# Row Embedding
row_vocab_path = config.input_base_path + '/row_vocab.txt'
row_embedding_output_path = config.output_base_path + '/row_embedding.tsv'
log('Writing row embeddings to: %s', row_embedding_output_path)
write_embedding_tensor_to_disk(row_vocab_path, row_embedding_output_path,
sess, model.row_embedding)
# Column Embedding
col_vocab_path = config.input_base_path + '/col_vocab.txt'
col_embedding_output_path = config.output_base_path + '/col_embedding.tsv'
log('Writing column embeddings to: %s', col_embedding_output_path)
write_embedding_tensor_to_disk(col_vocab_path, col_embedding_output_path,
sess, model.col_embedding)
class SwivelModel(object):
"""Small class to gather needed pieces from a Graph being built."""
def __init__(self, config):
"""Construct graph for dmc."""
self._config = config
# Create paths to input data files
log('Reading model from: %s', config.input_base_path)
count_matrix_files = glob.glob(config.input_base_path + '/shard-*.pb')
row_sums_path = config.input_base_path + '/row_sums.txt'
col_sums_path = config.input_base_path + '/col_sums.txt'
# Read marginals
row_sums = read_marginals_file(row_sums_path)
col_sums = read_marginals_file(col_sums_path)
self.n_rows = len(row_sums)
self.n_cols = len(col_sums)
log('Matrix dim: (%d,%d) SubMatrix dim: (%d,%d)',
self.n_rows, self.n_cols, config.submatrix_rows, config.submatrix_cols)
self.n_submatrices = (self.n_rows * self.n_cols /
(config.submatrix_rows * config.submatrix_cols))
log('n_submatrices: %d', self.n_submatrices)
with tf.device('/cpu:0'):
# ===== CREATE VARIABLES ======
# Get input
global_row, global_col, count = count_matrix_input(
count_matrix_files, config.submatrix_rows, config.submatrix_cols)
# Embeddings
self.row_embedding = embeddings_with_init(
embedding_dim=config.embedding_size,
vocab_size=self.n_rows,
name='row_embedding')
self.col_embedding = embeddings_with_init(
embedding_dim=config.embedding_size,
vocab_size=self.n_cols,
name='col_embedding')
tf.summary.histogram('row_emb', self.row_embedding)
tf.summary.histogram('col_emb', self.col_embedding)
matrix_log_sum = math.log(np.sum(row_sums) + 1)
row_bias_init = [math.log(x + 1) for x in row_sums]
col_bias_init = [math.log(x + 1) for x in col_sums]
self.row_bias = tf.Variable(
row_bias_init, trainable=config.trainable_bias)
self.col_bias = tf.Variable(
col_bias_init, trainable=config.trainable_bias)
tf.summary.histogram('row_bias', self.row_bias)
tf.summary.histogram('col_bias', self.col_bias)
# Add optimizer
l2_losses = []
sigmoid_losses = []
self.global_step = tf.Variable(0, name='global_step')
opt = tf.train.AdagradOptimizer(config.learning_rate)
all_grads = []
devices = ['/gpu:%d' % i for i in range(FLAGS.num_gpus)] \
if FLAGS.num_gpus > 0 else get_available_gpus()
self.devices_number = len(devices)
with tf.variable_scope(tf.get_variable_scope()):
for dev in devices:
with tf.device(dev):
with tf.name_scope(dev[1:].replace(':', '_')):
# ===== CREATE GRAPH =====
# Fetch embeddings.
selected_row_embedding = tf.nn.embedding_lookup(
self.row_embedding, global_row)
selected_col_embedding = tf.nn.embedding_lookup(
self.col_embedding, global_col)
# Fetch biases.
selected_row_bias = tf.nn.embedding_lookup(
[self.row_bias], global_row)
selected_col_bias = tf.nn.embedding_lookup(
[self.col_bias], global_col)
# Multiply the row and column embeddings to generate predictions.
predictions = tf.matmul(
selected_row_embedding, selected_col_embedding,
transpose_b=True)
# These binary masks separate zero from non-zero values.
count_is_nonzero = tf.to_float(tf.cast(count, tf.bool))
count_is_zero = 1 - count_is_nonzero
objectives = count_is_nonzero * tf.log(count + 1e-30)
objectives -= tf.reshape(
selected_row_bias, [config.submatrix_rows, 1])
objectives -= selected_col_bias
objectives += matrix_log_sum
err = predictions - objectives
# The confidence function scales the L2 loss based on the raw
# co-occurrence count.
l2_confidence = (config.confidence_base +
config.confidence_scale * tf.pow(
count, config.confidence_exponent))
l2_loss = config.loss_multiplier * tf.reduce_sum(
0.5 * l2_confidence * err * err * count_is_nonzero)
l2_losses.append(tf.expand_dims(l2_loss, 0))
sigmoid_loss = config.loss_multiplier * tf.reduce_sum(
tf.nn.softplus(err) * count_is_zero)
sigmoid_losses.append(tf.expand_dims(sigmoid_loss, 0))
loss = l2_loss + sigmoid_loss
grads = opt.compute_gradients(loss)
all_grads.append(grads)
with tf.device('/cpu:0'):
# ===== MERGE LOSSES =====
l2_loss = tf.reduce_mean(tf.concat(axis=0, values=l2_losses), 0,
name="l2_loss")
sigmoid_loss = tf.reduce_mean(tf.concat(axis=0, values=sigmoid_losses), 0,
name="sigmoid_loss")
self.loss = l2_loss + sigmoid_loss
average = tf.train.ExponentialMovingAverage(0.8, self.global_step)
loss_average_op = average.apply((self.loss,))
tf.summary.scalar("l2_loss", l2_loss)
tf.summary.scalar("sigmoid_loss", sigmoid_loss)
tf.summary.scalar("loss", self.loss)
# Apply the gradients to adjust the shared variables.
apply_gradient_ops = []
for grads in all_grads:
apply_gradient_ops.append(opt.apply_gradients(
grads, global_step=self.global_step))
self.train_op = tf.group(loss_average_op, *apply_gradient_ops)
self.saver = tf.train.Saver(sharded=True)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
start_time = time.time()
# Create the output path. If this fails, it really ought to fail
# now. :)
if not os.path.isdir(FLAGS.output_base_path):
os.makedirs(FLAGS.output_base_path)
# Create and run model
with tf.Graph().as_default():
model = SwivelModel(FLAGS)
# Create a session for running Ops on the Graph.
gpu_opts = {}
if FLAGS.per_process_gpu_memory_fraction > 0:
gpu_opts["per_process_gpu_memory_fraction"] = \
FLAGS.per_process_gpu_memory_fraction
else:
gpu_opts["allow_growth"] = True
gpu_options = tf.GPUOptions(**gpu_opts)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# Run the Op to initialize the variables.
sess.run(tf.global_variables_initializer())
# Start feeding input
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# Calculate how many steps each thread should run
n_total_steps = int(FLAGS.num_epochs * model.n_rows * model.n_cols) / (
FLAGS.submatrix_rows * FLAGS.submatrix_cols)
n_steps_per_thread = n_total_steps / (
FLAGS.num_concurrent_steps * model.devices_number)
n_submatrices_to_train = model.n_submatrices * FLAGS.num_epochs
t0 = [time.time()]
n_steps_between_status_updates = 100
status_i = [0]
status_lock = threading.Lock()
msg = ('%%%dd/%%d submatrices trained (%%.1f%%%%), %%5.1f submatrices/sec |'
' loss %%f') % len(str(n_submatrices_to_train))
def TrainingFn():
for _ in range(int(n_steps_per_thread)):
_, global_step, loss = sess.run((
model.train_op, model.global_step, model.loss))
show_status = False
with status_lock:
new_i = global_step // n_steps_between_status_updates
if new_i > status_i[0]:
status_i[0] = new_i
show_status = True
if show_status:
elapsed = float(time.time() - t0[0])
log(msg, global_step, n_submatrices_to_train,
100.0 * global_step / n_submatrices_to_train,
n_steps_between_status_updates / elapsed, loss)
t0[0] = time.time()
# Start training threads
train_threads = []
for _ in range(FLAGS.num_concurrent_steps):
t = threading.Thread(target=TrainingFn)
train_threads.append(t)
t.start()
# Wait for threads to finish.
for t in train_threads:
t.join()
coord.request_stop()
coord.join(threads)
# Write out vectors
write_embeddings_to_disk(FLAGS, model, sess)
# Shutdown
sess.close()
log("Elapsed: %s", time.time() - start_time)
if __name__ == '__main__':
tf.app.run()