forked from seann999/ssd_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatcher.py
126 lines (95 loc) · 5.05 KB
/
matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import constants as c
from constants import layer_boxes, classes, negposratio
# cant import out_shapes and defaults here since its still not initialized
from ssd_common import center2cornerbox, calc_jaccard
import numpy as np
def format_output(pred_labels, pred_locs, boxes=None, confidences=None):
if boxes is None:
boxes = [
[[[None for i in range(layer_boxes[o])] for x in range(c.out_shapes[o][1])] for y in range(c.out_shapes[o][2])]
for o in range(len(layer_boxes))]
if confidences is None:
confidences = []
index = 0
for o_i in range(len(layer_boxes)):
for y in range(c.out_shapes[o_i][2]):
for x in range(c.out_shapes[o_i][1]):
for i in range(layer_boxes[o_i]):
diffs = pred_locs[index]
w = c.defaults[o_i][x][y][i][2] + diffs[2]
h = c.defaults[o_i][x][y][i][3] + diffs[3]
c_x = c.defaults[o_i][x][y][i][0] + diffs[0]
c_y = c.defaults[o_i][x][y][i][1] + diffs[1]
boxes[o_i][x][y][i] = [c_x, c_y, w, h]
logits = pred_labels[index]
#if np.argmax(logits) != classes+1:
info = ([o_i, x, y, i], np.amax(np.exp(logits) / (np.sum(np.exp(logits)) + 1e-3)), np.argmax(logits))
# indices, max probability, corresponding label
if len(confidences) < index+1:
confidences.append(info)
else:
confidences[index] = info
#else:
# logits = pred_labels[index][:-1]
# confidences.append(([o_i, x, y, i], np.amax(np.exp(logits) / (np.sum(np.exp(logits)) + 1e-3)),
# np.argmax(logits)))
index += 1
#sorted_confidences = sorted(confidences, key=lambda tup: tup[1])[::-1]
return boxes, confidences
def get_top_confidences(pred_labels, top_k):
confidences = []
for logits in pred_labels:
probs = np.exp(logits) / (np.sum(np.exp(logits)) + 1e-3)
top_label = np.amax(probs)
confidences.append(top_label)
#top_confidences = sorted(confidences, key=lambda tup: tup[1])[::-1]
k = min(top_k, len(confidences))
top_confidences = np.argpartition(np.asarray(confidences), -k)[-k:]
return top_confidences
class Matcher:
def __init__(self):
self.index2indices = []
for o_i in range(len(layer_boxes)):
for y in range(c.out_shapes[o_i][2]):
for x in range(c.out_shapes[o_i][1]):
for i in range(layer_boxes[o_i]):
self.index2indices.append([o_i, y, x, i])
def match_boxes(self, pred_labels, anns):
matches = [[[[None for i in range(c.layer_boxes[o])] for x in range(c.out_shapes[o][1])] for y in range(c.out_shapes[o][2])]
for o in range(len(layer_boxes))]
positive_count = 0
for index, (gt_box, id) in zip(range(len(anns)), anns):
top_match = (None, 0)
for o in range(len(layer_boxes)):
x1 = max(int(gt_box[0] / (1.0 / c.out_shapes[o][2])), 0)
y1 = max(int(gt_box[1] / (1.0 / c.out_shapes[o][1])), 0)
x2 = min(int((gt_box[0] + gt_box[2]) / (1.0 / c.out_shapes[o][2]))+2, c.out_shapes[o][2])
y2 = min(int((gt_box[1] + gt_box[3]) / (1.0 / c.out_shapes[o][1]))+2, c.out_shapes[o][1])
for y in range(y1, y2):
for x in range(x1, x2):
for i in range(layer_boxes[o]):
box = c.defaults[o][x][y][i]
jacc = calc_jaccard(gt_box, center2cornerbox(box)) #gt_box is corner, box is center-based so convert
if jacc >= 0.5:
matches[o][x][y][i] = (gt_box, id)
positive_count += 1
if jacc > top_match[1]:
top_match = ([o, x, y, i], jacc)
top_box = top_match[0]
#if box's jaccard is <0.5 but is the best
if top_box is not None and matches[top_box[0]][top_box[1]][top_box[2]][top_box[3]] is None:
positive_count += 1
matches[top_box[0]][top_box[1]][top_box[2]][top_box[3]] = (gt_box, id)
negative_max = positive_count * negposratio
negative_count = 0
confidences = get_top_confidences(pred_labels, negative_max)
for i in confidences:
indices = self.index2indices[i]
if matches[indices[0]][indices[1]][indices[2]][indices[3]] is None and np.argmax(pred_labels[i]) != classes:
matches[indices[0]][indices[1]][indices[2]][indices[3]] = -1
negative_count += 1
if negative_count >= negative_max:
break
#print("%i positives" % positive_count)
#print("%i/%i negatives" % (negative_count, negative_max))
return matches