forked from leaderj1001/Stand-Alone-Self-Attention
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
134 lines (106 loc) · 4.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention import AttentionConv, AttentionStem
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, groups=1, base_width=64):
super(Bottleneck, self).__init__()
self.stride = stride
width = int(out_channels * (base_width / 64.)) * groups
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, width, kernel_size=1, bias=False),
nn.BatchNorm2d(width),
nn.ReLU(),
)
self.conv2 = nn.Sequential(
AttentionConv(width, width, kernel_size=7, padding=3, groups=8),
nn.BatchNorm2d(width),
nn.ReLU(),
)
self.conv3 = nn.Sequential(
nn.Conv2d(width, self.expansion * out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.expansion * out_channels),
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels)
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.stride >= 2:
out = F.avg_pool2d(out, (self.stride, self.stride))
out += self.shortcut(x)
out = F.relu(out)
return out
class Model(nn.Module):
def __init__(self, block, num_blocks, num_classes=1000, stem=False):
super(Model, self).__init__()
self.in_places = 64
if stem:
self.init = nn.Sequential(
# CIFAR10
AttentionStem(in_channels=3, out_channels=64, kernel_size=4, stride=1, padding=2, groups=1),
nn.BatchNorm2d(64),
nn.ReLU(),
# For ImageNet
# AttentionStem(in_channels=3, out_channels=64, kernel_size=4, stride=1, padding=2, groups=1),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(4, 4)
)
else:
self.init = nn.Sequential(
# CIFAR10
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
# For ImageNet
# nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.dense = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_places, planes, stride))
self.in_places = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.init(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.dense(out)
return out
def ResNet26(num_classes=1000, stem=False):
return Model(Bottleneck, [1, 2, 4, 1], num_classes=num_classes, stem=stem)
def ResNet38(num_classes=1000, stem=False):
return Model(Bottleneck, [2, 3, 5, 2], num_classes=num_classes, stem=stem)
def ResNet50(num_classes=1000, stem=False):
return Model(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, stem=stem)
def get_model_parameters(model):
total_parameters = 0
for layer in list(model.parameters()):
layer_parameter = 1
for l in list(layer.size()):
layer_parameter *= l
total_parameters += layer_parameter
return total_parameters
# temp = torch.randn((2, 3, 224, 224))
# model = ResNet38(num_classes=1000, stem=True)
# print(get_model_parameters(model))