Skip to content

Latest commit

 

History

History
443 lines (333 loc) · 14.1 KB

Creating-a-custom-beam.rst

File metadata and controls

443 lines (333 loc) · 14.1 KB

Creating a custom beam

There are multiple ways to create your own beam in the toolbox. If your beam can be described as a mixture of other beams already in the toolbox, you can create the beam by simply adding these beams, see the combining beams page. If you already have the beam shape coefficients, the easiest way is to create a new instance of ott.Bsc. If you don't know the coefficients but you know the near- or far-field representation of the beam then you can use the static functions in ott.BscPointmatch.

A more complicated way to create your own beam is to create your own class which inherits either from ott.Bsc or ott.BscPointmatch. This offers greater flexibility and allows you to easily add additional checks on user input.

Using ott.Bsc directly

The ott.Bsc class can be instantiated with arrays of the beam shape coefficients, this can be useful if you want to create a beam with particular multipole components or if you are using another method to calculate the beam shape coefficients. For example, to create a incoming beam with only quadrapole coefficients:

a = [0, 0, 0, 0, 1, 0, 0, 0];  % [3 dipole, 5 quadrapole]
b = 1i * a;
basis = 'incoming';
type = 'incident';
beam = ott.Bsc(a, b, basis, type);

The ott.Bsc object can then be used with Tmatrix objects or for visualisation of the beam:

figure();
beam.visualiseFarfieldSphere('type', '3dpolar', 'field', 'E2')
dipole beam visualization

dipole beam visualization

Creating a beam with point matching

If you don't know the VSWF expansion of your beam but you are able to calculate or measure the phase and amplitude in the near-field or far-field, you can use ott.BscPointmatch or ott.BscPmParaxial. ott.BscPointmatch contains two static methods for calculating the beam shape coefficients from the near-fields or far-fields. ott.BscPmParaxial uses the far-field method from ott.BscPointmatch and provides the code to calculate the far-field coordinates for a 2-D image of the fields at the back focal plane of the objective.

ott.BscPmParaxial in far-field

This class can be used to create beam shape coefficients from images at the back-aperture of the microscope objective. For this example, we will use the following images for the phase and amplitude:

phase pattern amplitude pattern

These images may work better if spatial filtering is applied to remove higher frequency components from the images, this can be achieved using imgaussfilt. In this example, we are going to generate a circularly polarised beam. To do this, we first load our images and assemble them into a complex E field matrix:

% read, scale and convert to double (might need rgb2gray depending on file)
imPhase = double(imread('phase.png')) ./ 255.0;
imAmplitude = double(imread('amplitude.png')) ./ 255.0;

E = imAmplitude;    % x polarisation
E(:, :, 2) = 1i * imAmplitude;  % y polarisation
E = E .* exp(1i * 2 * pi * imPhase);

For a vector beam, we could instead use separate images for the x and y polarisation of each pixel. To use the BscPmParaxial class, we need to provide the complex far-field matrix, the numerical aperture of the beam, properties of the beam (such as wavelength and frequency), and a mapping function describing how the image coordinates are mapped to the spherical coordinates for the far-field of the beam.

The E-field matrix describes the field at the back aperture of the objective. The matrix is mapped onto a hemisphere, with a maximum angle defined by the numerical aperture of the objective. The centre of the hemisphere corresponds to the centre of the images. The radial coordinate extends from the centre of the image to the edge of the image (the corners of the image do not contribute to the beam). BscPmParaxial supports the following mapping functions

  • 'sintheta' (default) image radius proportional to sin(theta)
  • 'tantheta' image radius proportional to tan(theta)
  • 'theta' image radius proportional to theta where theta is the polar coordinate on the hemisphere.
index_medium = 1.0;
wavelength0= 1064e-9;
omega = 3e8 / wavelength0 * 2 * pi;
NA = -1.0;   % sign of NA determines beam direction
Nmax = 30;   % higher spatial frequencies require higher NA
beam = ott.BscPmParaxial(NA, E, ...
    'index_medium', index_medium, ...
    'Nmax', Nmax, ...
    'wavelength0', wavelength0, ...
    'omega', omega);
beam.basis = 'regular';
figure();
beam.visualise('axis', 'y');
output beam

output beam

This method can be slow since the coefficient matrix for point matching is calculated each time. To speed up the method for multiple beam calculation, BscPmParaxial supports keeping the coefficient matrix.

beam1 = ott.BscPmParaxial(..., 'keep_coefficient_matrix', true);
beam2 = ott.BscPmParaxial(..., 'beamData', beam1);

Far-field

ott.BscPointmatch/bsc_farfield can be used to calculate the beam shape coefficients from the mode indices, coordinates and E-field. The resulting BSC can be wrapped in an ott.Bsc object (see above).

% Calculate mode indices
mode_indexes=[1:Nmax*(Nmax+2)].';
[nn,mm]=ott.utils.combined_index(mode_indexes);

% Calculate e_field in theta/phi coordinates
[theta,phi]=ott.utils.angulargrid(2*(Nmax+1),2*(Nmax+1));
e_field = ...;

[a, b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));

Near-field

ott.BscPointmatch/bsc_focalplane calculates the beam shape coefficients in a Cartesian coordinate system centred around the focal plane. To use the method, you must specify the mode indices, field locations and field vectors in Cartesian coordinates.

% Calculate mode indices
mode_indexes=[1:Nmax*(Nmax+2)].';
[nn,mm]=ott.utils.combined_index(mode_indexes);

% Calculate e_field
[xx, yy, zz] = meshgrid(linspace(-1, 1), linspace(-1, 1), linspace(-1, 1));
[r, theta, phi] = ott.utils.xyz2rtp(xx(:), yy(:), zz(:));
kr = r .* 2 * pi / lambda;
e_field = [Ex(:); Ey(:); Ez(:)];

[a, b] = ott.BscPointmatch.bsc_focalplane(nn, mm, e_field, kr, theta, phi);

Custom ott.BscPointmatch class

Although the bsc_focalplane and bsc_pointmatch functions can be used directly, their use is rather cumbersome for regular use. In order to offer a simplified interface for these objects you can inherit from ott.BscPointmatch. This allows you to define all the methods needed to create the beam within the class, directly set the beam shape coefficients and provide a user interface which provides only physically motivated parameters.

In this section we will go through an example of creating a point-matching method for annular beams. For other examples, look at the ott.BscPm* class implementations.

All beam classes should inherit from ott.Bsc. Point-matching beams should implement from ott.BscPointmatch which inherits from ott.Bsc. For our annular class we inherit from ott.BscPointmatch. The outline for our class is shown bellow:

classdef BscPmAnnular < ott.BscPointmatch
  % Documentation...

  properties (SetAccess=protected)
    % Beam properties...
  end

  methods (Static)
    % Methods which can't access properties...
  end

  methods
    % Methods which can access properties
  end
end

We declare the properties as SetAccess=protected, this means that the properties can only be set by functions defined in the class method blocks. For annular beams, we define one property, the numerical aperture describing the inner and outer radius of the annular.

properties (SetAccess=protected)
  NA     % Numerical aperture [r1, r2]
end

To calculate the beam profile, we will implement a static method which takes as input the two NA and outputs zeros or ones for the amplitude of the beam:

methods (Static)
  function im = generatePattern(r1, r2)

    [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
    rr = sqrt(xx.^2 + yy.^2);

    im = double(rr > r1 & rr < r2);
  end
end

The main method the user will use to interact with the beam is the constructor. The constructor will include the numerical aperture and optional named arguments. We use an inputParser to handle the named arguments. For the beam wavenumber, we can use the ott.Bsc/parser_k_medium function.

methods
  function beam = BscPmAnnular(NA, varargin)

    % Call base class constructor
    beam = [email protected]();

    p = inputParser();
    p.addParameter('Nmax', 30);

    % Parameters for frequency and wavenumber
    p.addParameter('omega', 2*pi);
    p.addParameter('wavelength0', 1);
    p.addParameter('k_medium', []);
    p.addParameter('index_medium', []);
    p.addParameter('wavelength_medium', []);
    p.parse(varargin{:});

    % Store/get parameters
    Nmax = p.Results.Nmax;
    beam.k_medium = ott.Bsc.parser_k_medium(p, 2*pi);
    beam.omega = p.Results.omega;
    beam.NA = NA;

    if isempty(p.Results.index_medium)
      nMedium = 1.0;
    else
      nMedium = p.Results.index_medium;
    end

    % Calculate the radius from NA
    NAonm = NA/nMedium;

    % Calculate the pattern
    im = beam.generatePattern(NAonm(1), NAonm(2));

    % Calculate the coordinates in the far-field
    [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
    rr = sqrt(xx.^2 + yy.^2);
    phi = atan2(yy, xx);
    theta = asin(rr);

    % Remove points outside NA=1
    phi = phi(rr < 1);
    theta = theta(rr < 1);
    im = im(rr < 1);

    % Transform im into e_field
    Et = sign(cos(theta)).*cos(phi).*im;
    Ep = -sin(phi).*im;
    e_field=[Et(:); Ep(:)];

    % Calculate mode indices
    mode_indexes=[1:Nmax*(Nmax+2)].';
    [nn,mm]=ott.utils.combined_index(mode_indexes);

    % Calculate BSC
    [beam.a, beam.b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));

    % Set other BSC properties
    beam.type = 'incident';
    beam.basis = 'regular';
  end
end

This class doesn't implement exactly the same functionality as the ott.BscPmAnnular class, but it shows how a class could be implemented to wrap the bsc_farfield method.

Full class definition
classdef BscPmAnnular < ott.BscPointmatch
  % Documentation...

  properties (SetAccess=protected)
    NA     % Numerical aperture [r1, r2]
  end

  methods (Static)
    function im = generatePattern(r1, r2)

      [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
      rr = sqrt(xx.^2 + yy.^2);

      im = double(rr > r1 & rr < r2);
    end
  end

  methods
    function beam = BscPmAnnular(NA, varargin)

      % Call base class constructor
      beam = [email protected]();

      p = inputParser();
      p.addParameter('Nmax', 20);

      % Parameters for frequency and wavenumber
      p.addParameter('omega', 2*pi);
      p.addParameter('wavelength0', 1);
      p.addParameter('k_medium', []);
      p.addParameter('index_medium', []);
      p.addParameter('wavelength_medium', []);
      p.parse(varargin{:});

      % Store/get parameters
      Nmax = p.Results.Nmax;
      beam.k_medium = ott.Bsc.parser_k_medium(p, 2*pi);
      beam.omega = p.Results.omega;
      beam.NA = NA;

      if isempty(p.Results.index_medium)
        nMedium = 1.0;
      else
        nMedium = p.Results.index_medium;
      end

      % Calculate the radius from NA
      NAonm = NA/nMedium;

      % Calculate the pattern
      im = beam.generatePattern(NAonm(1), NAonm(2));

      % Calculate the coordinates in the far-field
      [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
      rr = sqrt(xx.^2 + yy.^2);
      phi = atan2(yy, xx);
      theta = asin(rr);

      % Remove points outside NA=1
      phi = phi(rr < 1);
      theta = theta(rr < 1);
      im = im(rr < 1);

      % Transform im into e_field
      Et = sign(cos(theta)).*cos(phi).*im;
      Ep = -sin(phi).*im;
      e_field=[Et(:); Ep(:)];

      % Calculate mode indices
      mode_indexes=[1:Nmax*(Nmax+2)].';
      [nn,mm]=ott.utils.combined_index(mode_indexes);

      % Calculate BSC
      [beam.a, beam.b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));

      % Set other BSC properties
      beam.type = 'incident';
      beam.basis = 'regular';
    end
  end
end

Creating a custom Bsc class

For other beam shape coefficient definitions, it is possible to create a custom class which inherits from ott.Bsc. The implemention for this class will be very similar to the BscPmAnnular class shown above. For examples, see ott.BscBessel and ott.BscPlane.

classdef BscCustomClass < ott.Bsc
  % Documentation...

  properties (SetAccess=protected)
    % Beam properties...
  end

  methods (Static)
    % Methods which can't access properties...
  end

  methods
    % Methods which can access properties

    function beam = BscCustomClass()

      % Call the base class constructor
      beam = [email protected]();

      % Implementation...
    end
  end
end