-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata-download.py
98 lines (84 loc) · 3.02 KB
/
data-download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import sys
from torchvision.datasets import MNIST, CelebA, CIFAR10
import argparse
from pathlib import Path
import torch
import numpy as np
from torchvision.transforms import PILToTensor
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser(
description="python script to download datasets which are available with torchvision"
)
parser.add_argument(
"-j", "--nthreads", type=int, default=1, help="number of threads to use"
)
parser.add_argument(
"-b", "--batchsize", type=int, default=64, help="batch_size for loading"
)
parser.add_argument(
"-o",
"--outdir",
type=Path,
default=Path("./data"),
help="the base folder in which to store the output",
)
parser.add_argument(
"dataset",
nargs="+",
help="datasets to download (possible values: MNIST, CelebA, CIFAR10)",
)
args = parser.parse_args()
if not "dataset" in args:
print("dataset argument not found in", args)
parser.print_help()
return 1
tv_datasets = {"mnist": MNIST, "celeba": CelebA, "cifar10": CIFAR10}
rootdir = args.outdir
if not rootdir.exists():
print(f"creating root folder {rootdir}")
rootdir.mkdir(parents=True)
for dname in args.dataset:
if dname.lower() not in tv_datasets.keys():
print(f"{dname} not available for download yet. skipping.")
continue
dfolder = rootdir / dname
dataset = tv_datasets[dname]
if "celeba" in dname.lower():
train_kwarg = {"split": "train"}
val_kwarg = {"split": "valid"}
else:
train_kwarg = {"train": True}
val_kwarg = {"train": False}
train_data = dataset(
dfolder, download=False, transform=PILToTensor(), **train_kwarg
)
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=4, shuffle=False, num_workers=args.nthreads
)
train_batches = []
for b, (x, y) in enumerate(tqdm(train_loader)):
train_batches.append(x.clone().detach().numpy())
val_data = dataset(dfolder, download=False, transform=PILToTensor(), **val_kwarg)
val_loader = torch.utils.data.DataLoader(
val_data, batch_size=4, shuffle=True, num_workers=args.nthreads
)
val_batches = []
for b, (x, y) in enumerate(tqdm(val_loader)):
val_batches.append(x.clone().detach().numpy())
train_x = np.concatenate(train_batches)
np.savez_compressed(dfolder / "train_data.npz", data=train_x)
print(
"Wrote ",
dfolder / "train_data.npz",
f"(shape {train_x.shape}, {train_x.dtype})",
)
val_x = np.concatenate(val_batches)
np.savez_compressed(dfolder / "eval_data.npz", data=val_x)
print(
"Wrote ", dfolder / "eval_data.npz", f"(shape {val_x.shape}, {val_x.dtype})"
)
return 0
if __name__ == "__main__":
rv = main()
sys.exit(rv)