-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfibo.py
51 lines (45 loc) · 1.02 KB
/
fibo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from time import time
# (f_n+1, f_n)^T = [[1, 1], [1, 0]](f_n, f_n-1)^T
A = np.array([[1, 1], [1, 0]])
MOD = 100000
def fib0(a, b, n):
while n>0:
a, b = b % MOD, (a+b) % MOD
n -= 1
return a
def fib(a, b, n):
if n==0:
return a
if n==1:
return b
bin_s = bin(n)[2:]
An = [A]
for _ in range(len(bin_s)-1):
An.append(An[-1]@An[-1] % MOD)
final_A = np.eye(2)
for i, c in enumerate(bin_s[::-1]):
if c=='1':
final_A = final_A@An[i] % MOD
init_vec = np.array([[a],[b]])
final_vec = final_A@init_vec % MOD
return round(final_vec[1][0])
# a = b = 1
# n = 1000000
# tik = time()
# print(fib0(a, b, n))
# tok = time()
# print(f"{tok-tik:.2f}")
# tik = time()
# print(fib(a, b, n))
# tok = time()
# print(f"{tok-tik:.2f}")
# 判断一个数是否在斐波那契数列中
def in_seq(a, b, target):
if a==target:
return True
if a*b<0:
# 异号
a, b = a+b, a
else:
pass