-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModels.py
280 lines (253 loc) · 12 KB
/
Models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
import numpy as np
import scipy.io as scio
import utils
from metrics import cal_clustering_metric
from sklearn.cluster import KMeans
from utils import *
class AdaGRPCA(torch.nn.Module):
def __init__(self, raw_X, X, labels, layers=None, lam1=0.1, lam2=0.1, lam3=1e-6, num_neighbors=3, sigma=0.1, p=1,
learning_rate=10**-3, max_iter=50, max_epoch=10, update=True, inc_neighbors=2, links=0, device=None):
super(AdaGRPCA, self).__init__()
if layers is None:
layers = [1024, 256, 64]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.raw_X = raw_X
self.X = X
self.n_clusters = np.unique(labels).shape[0]
self.labels = np.array(labels).flatten()
self.lam1 = lam1
self.lam2 = lam2
self.lam3 = lam3
self.sigma = sigma
self.p = p
self.learning_rate = learning_rate
self.max_iter = max_iter
self.max_epoch = max_epoch
self.num_neighbors = num_neighbors + 1
self.embedding_dim = layers[-1]
self.mid_dim = layers[1]
self.input_dim = layers[0]
self.update = update
self.inc_neighbors = inc_neighbors
self.max_neighbors = self.cal_max_neighbors()
self.links = links
self.device = device
self.loss_fn = torch.nn.MSELoss()
self.loss_list = []
self.rce_list = []
self.x_list = []
self.embedding = None
self._build_up()
def cal_D(self, X):
# print('X', X)
eps = 1e-6
# m = X.shape[1]
# I = (eps * torch.eye(m)).to(self.device)
T = torch.matmul(X.t(), X)
e, v = torch.symeig(T, eigenvectors=True)
e = torch.relu(e) + eps
# print('e', e)
e = e ** ((self.p - 2) / 2)
# print('e_pow', e)
# print('v', v)
T_pow = v.matmul((torch.diag(e)).matmul(v.t()))
D = 0.5 * self.p * T_pow
D = D.detach()
# print('D', D)
return D
def update_D(self, X):
self.D = self.cal_D(X)
def _build_up(self):
self.W1 = get_weight_initial([self.input_dim, self.mid_dim])
self.W2 = get_weight_initial([self.mid_dim, self.embedding_dim])
self.W3 = get_weight_initial([self.embedding_dim, self.mid_dim])
self.W4 = get_weight_initial([self.mid_dim, self.input_dim])
def sigma_norm(self, X):
size = torch.numel(X)
tmp = torch.norm(X, dim=1)
res = torch.sum(tmp*tmp*(1+self.sigma)/(tmp+self.sigma)) / size
return res
def cal_max_neighbors(self):
if not self.update:
return 0
size = self.X.shape[0]
num_clusters = np.unique(self.labels).shape[0]
return 1.0 * size / num_clusters
def forward(self, Laplacian):
# sparse
embedding = Laplacian.mm(self.X.matmul(self.W1))
embedding = torch.nn.functional.relu(embedding)
# sparse
self.embedding = Laplacian.mm(embedding.matmul(self.W2))
distances = utils.distance(self.embedding.t(), self.embedding.t())
softmax = torch.nn.Softmax(dim=1)
recons_w = softmax(-distances)
# decoder 2
# x_3 = Laplacian.matmul(self.embedding.matmul(self.W3))
# x_3 = torch.nn.functional.relu(x_3)
# recons_x = Laplacian.matmul(x_3.matmul(self.W4))
# decoder FC
x_3 = torch.nn.functional.relu(self.embedding.matmul(self.W3))
x_4 = x_3.matmul(self.W4)
recons_x = x_4
# sparseProb = SparseProb(sparsity=self.num_neighbors)
# recons_w = sparseProb(distances)
return recons_w + 1e-10, recons_x + 1e-10
# return 1 / (distances + 1)
# return torch.sigmoid(self.embedding.matmul(torch.t(self.embedding)))
def update_graph(self):
weights, raw_weights = utils.cal_weights_via_CAN(self.embedding.t(), self.num_neighbors, self.links) # first
weights = weights.detach()
raw_weights = raw_weights.detach()
# threshold = 0.5
# connections = (recons > threshold).type(torch.IntTensor).cuda()
# weights = weights * connections
Laplacian = utils.get_Laplacian_from_weights(weights)
# Laplacian = utils.get_Laplacian_from_weights(utils.noise(weights))
return weights, Laplacian, raw_weights
def update_graph_entropy(self, recons):
size = self.embedding.shape[0]
distances = utils.distance(self.embedding.t(), self.embedding.t())
distances = self.lam1 * distances - recons.log()
distances = distances.detach()
distances = torch.exp(-distances)
sorted_distances, _ = distances.sort(dim=1, descending=True)
flags = sorted_distances[:, self.num_neighbors].reshape([size, 1])
distances[distances <= flags] = 0
sums = distances.sum(dim=1).reshape([size, 1])
raw_weights = distances / sums
weights = (raw_weights + raw_weights.t()) / 2
Laplacian = utils.get_Laplacian_from_weights(weights)
return weights, Laplacian, raw_weights
def build_loss(self, recons_w, recons_x, weights, raw_weights):
size = self.X.shape[0]
loss1 = raw_weights * torch.log(raw_weights / recons_w + 10**-10)
loss1 = loss1.sum(dim=1)
loss1 = loss1.mean()
# loss += 10**-3 * (torch.mean(self.embedding.pow(2)))
# loss += 10**-3 * (torch.mean(self.W1.pow(2)) + torch.mean(self.W2.pow(2)))
# loss += 10**-3 * (torch.mean(self.W1.abs()) + torch.mean(self.W2.abs()))
degree = weights.sum(dim=1)
L = torch.diag(degree) - weights
loss1 += self.lam1 * torch.trace(self.embedding.t().matmul(L).matmul(self.embedding)) / size
# loss2 = self.loss_fn(self.X, recons_x) + self.lam2 * torch.norm(recons_x, 'nuc')
# loss2 = self.sigma_norm(self.X-recons_x) + self.lam2 * torch.norm(recons_x, 'nuc')
sp_norm = torch.trace(recons_x.matmul(torch.matmul(self.D, recons_x.t())))
# sp_norm = torch.pow(torch.trace(recons_x.t().matmul(recons_x)), 0.5 * self.p)
# loss2 = self.loss_fn(self.X, recons_x) + self.lam2 * sp_norm
loss2 = self.sigma_norm(self.X - recons_x) + self.lam2 * sp_norm
if self.lam3 > 1e15:
loss1 = 0
else:
loss2 *= self.lam3
# print('loss1: %5.4f loss2: %5.4f' % (loss1, loss2))
return loss1 + loss2
def run(self):
weights, raw_weights = utils.cal_weights_via_CAN(self.X.t(), self.num_neighbors, self.links)
Laplacian = utils.get_Laplacian_from_weights(weights)
Laplacian = Laplacian.to_sparse()
torch.cuda.empty_cache()
# Laplacian = utils.get_Laplacian_from_weights(utils.noise(weights))
print('Raw-CAN:', end=' ')
res_metrics = self.evalutaion(weights, recons_x=None, k_means=False)
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
self.to(self.device)
for epoch in range(self.max_epoch):
for i in range(self.max_iter):
# optimizer.zero_grad()
recons_w, recons_x = self(Laplacian)
if i % 1 == 0:
self.update_D(recons_x)
loss = self.build_loss(recons_w, recons_x, weights, raw_weights)
weights = weights.cpu()
raw_weights = raw_weights.cpu()
torch.cuda.empty_cache()
optimizer.zero_grad()
loss.backward()
optimizer.step()
weights = weights.to(self.device)
raw_weights = raw_weights.to(self.device)
if i % 50 == 0:
self.loss_list.append(loss.cpu().detach().numpy())
self.rce_list.append(np.linalg.norm(self.raw_X-recons_x.cpu().detach().numpy()) ** 2)
self.x_list.append(epoch * self.max_iter + i)
# print('epoch-%3d-i:%3d,' % (epoch, i), 'loss: %6.5f' % loss.item())
# scio.savemat('results/embedding_{}.mat'.format(epoch), {'Embedding': self.embedding.cpu().detach().numpy()})
if self.num_neighbors < self.max_neighbors:
weights, Laplacian, raw_weights = self.update_graph()
# weights, Laplacian, raw_weights = self.update_graph_entropy(recons)
# self.clustering(weights, k_means=False)
res_metrics = self.evalutaion(weights, recons_x, k_means=True, SC=True)
self.num_neighbors += self.inc_neighbors
else:
if self.update:
self.num_neighbors = int(self.max_neighbors)
break
recons = None
weights = weights.cpu()
raw_weights = raw_weights.cpu()
torch.cuda.empty_cache()
# w, _, __ = self.update_graph()
# _, __ = (None, None)
# torch.cuda.empty_cache()
# w, _, __ = self.update_graph_entropy(recons)
res_metrics = self.evalutaion(weights, recons_x, k_means=False)
weights = weights.to(self.device)
raw_weights = raw_weights.to(self.device)
if self.update:
break
# print('epoch:%3d,' % epoch, 'loss: %6.5f' % loss.item())
# print('epoch:%3d,' % epoch, 'the rank of reconstructed X', torch.matrix_rank(recons_x))
return res_metrics
def evalutaion(self, weights, recons_x=None, k_means=True, SC=True):
acc_km, nmi_km, pur_km, acc_sc, nmi_sc, pur_sc, recon_err = 0, 0, 0, 0, 0, 0, 0
n_clusters = self.n_clusters
if k_means:
embedding = self.embedding.cpu().detach().numpy()
km = KMeans(n_clusters=n_clusters).fit(embedding)
prediction = km.predict(embedding)
# print(np.max(embedding))
acc, nmi, pur = cal_clustering_metric(self.labels, prediction)
acc_km, nmi_km, pur_km = acc, nmi, pur
print('k-means --- ACC: %5.4f, NMI: %5.4f PUR: %5.4f' % (acc, nmi, pur), end=' ')
if SC:
degree = torch.sum(weights, dim=1).pow(-0.5)
L = (weights * degree).t() * degree
L = L.cpu()
_, vectors = L.symeig(True)
indicator = vectors[:, -n_clusters:]
indicator = indicator / (indicator.norm(dim=1)+10**-10).repeat(n_clusters, 1).t()
indicator = indicator.cpu().numpy()
km = KMeans(n_clusters=n_clusters).fit(indicator)
prediction = km.predict(indicator)
acc, nmi, pur = cal_clustering_metric(self.labels, prediction)
acc_sc, nmi_sc, pur_sc = acc, nmi, pur
print('SC --- ACC: %5.4f, NMI: %5.4f PUR: %5.4f' % (acc, nmi, pur), end=' ')
if recons_x is not None:
recon_err = np.linalg.norm(self.raw_X-recons_x.cpu().detach().numpy()) ** 2
print('RCE: %5.4f ' % recon_err, end='')
print('')
return acc_km, nmi_km, pur_km, acc_sc, nmi_sc, pur_sc, recon_err
class SparseProb(torch.nn.Module):
def __init__(self, sparsity):
super().__init__()
self.sparsity = sparsity
def forward(self, distances):
"""
:param distances: n * n
:return:
"""
size = distances.shape[0]
sorted_distances, _ = distances.sort(dim=1)
top_k = sorted_distances[:, self.sparsity]
top_k = torch.t(top_k.repeat(size, 1)) + 10 ** -10
sum_top_k = torch.sum(sorted_distances[:, 0:self.sparsity], dim=1)
sum_top_k = torch.t(sum_top_k.repeat(size, 1))
prob = torch.div(top_k - distances, self.sparsity * top_k - sum_top_k)
return prob.relu()
def get_weight_initial(shape):
bound = np.sqrt(6.0 / (shape[0] + shape[1]))
ini = torch.rand(shape) * 2 * bound - bound
return torch.nn.Parameter(ini, requires_grad=True)