-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPlanPathRRTstar.m
234 lines (204 loc) · 8.13 KB
/
PlanPathRRTstar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
function result = PlanPathRRTstar(param, p_start, p_goal)
% RRT*
% credit : Anytime Motion Planning using the RRT*, S. Karaman, et. al.
% calculates the path using RRT* algorithm
% param : parameters for the problem
% 1) threshold : stopping criteria (distance between goal and current
% node)
% 2) maxNodes : maximum nodes for rrt tree
% 3) neighborhood : distance limit used in finding neighbors
% 4) obstacle : must be rectangle-shaped #limitation
% 5) step_size : the maximum distance that a robot can move at a time
% (must be equal to neighborhood size) #limitation
% 6) random_seed : to control the random number generation
% p_start : [x;y] coordinates
% p_goal : [x;y] coordinates
% variable naming : when it comes to describe node, if the name is with
% 'node', it means the coordinates of that node or it is just an index of
% rrt tree
% rrt struct : 1) p : coordinate, 2) iPrev : parent index, 3) cost :
% distance
% obstacle can only be detected at the end points but not along the line
% between the points
% for cost, Euclidean distance is considered.
% output : cost, rrt, time_taken
% whether goal is reached or not, depends on the minimum distance between
% any node and goal
field1 = 'p';
field2 = 'iPrev';
field3 = 'cost';
field4 = 'goalReached';
rng(param.random_seed);
tic;
start();
function start()
rrt(1) = struct(field1, p_start, field2, 0, field3, 0, field4, 0);
N = param.maxNodes; % iterations
j = 1;
% while endcondition>param.threshold %&& j<=N
while j<=N
sample_node = getSample();
% plot(sample_node(1), sample_node(2), '.g');
% text(sample_node(1), sample_node(2), strcat('random',num2str(j)))
nearest_node_ind = findNearest(rrt, sample_node);
% plot(rrt(nearest_node_ind).p(1), rrt(nearest_node_ind).p(2), '.g');
% text(rrt(nearest_node_ind).p(1), rrt(nearest_node_ind).p(2), strcat('nearest', num2str(j)));
new_node = steering(rrt(nearest_node_ind).p, sample_node);
if (isObstacleFree(new_node)==1)
% plot(new_node(1), new_node(2), '.g');
% text(new_node(1), new_node(2)+3, strcat('steered: new node', num2str(j)))
neighbors_ind = getNeighbors(rrt, new_node);
if(~isempty(neighbors_ind))
parent_node_ind = chooseParent(rrt, neighbors_ind, nearest_node_ind,new_node);
% plot(rrt(parent_node_ind).p(1), rrt(parent_node_ind).p(2), '.g');
% text(rrt(parent_node_ind).p(1), rrt(parent_node_ind).p(2)+3, strcat('parent', num2str(j)));
else
parent_node_ind = nearest_node_ind;
end
rrt = insertNode(rrt, parent_node_ind, new_node);
if (~isempty(neighbors_ind))
rrt = reWire(rrt, neighbors_ind, parent_node_ind, length(rrt));
end
if norm(new_node-p_goal) == param.threshold
rrt = setReachGoal(rrt);
end
end
j = j + 1;
end
setPath(rrt);
% text1 = strcat('Total number of generated nodes:', num2str(j-1))
% text1 = strcat('Total number of nodes in tree:', length(rrt))
end
function rrt=setReachGoal(rrt)
rrt(end).goalReached = 1;
end
function setPath(rrt)
for i = 1: length(rrt)-1
p1 = rrt(i).p;
rob.x = p1(1); rob.y=p1(2);
plot(rob.x,rob.y,'.b')
child_ind = find([rrt.iPrev]==i);
for j = 1: length(child_ind)
p2 = rrt(child_ind(j)).p;
plot([p1(1),p2(1)], [p1(2),p2(2)], 'b', 'LineWidth', 1);
end
end
[cost,i] = getFinalResult(rrt);
result.cost = cost;
result.rrt = [rrt.p];
while i ~= 0
p11 = rrt(i).p;
plot(p11(1),p11(2),'b', 'Marker','.', 'MarkerSize', 30);
i = rrt(i).iPrev;
if i ~= 0
p22 = rrt(i).p;
plot(p22(1),p22(2),'b', 'Marker', '.', 'MarkerSize', 30);
% plot([p11(1),p22(1)],[p11(2),p22(2)], 'b', 'LineWidth', 3);
end
end
result.time_taken = toc;
end
function [value,min_node_ind] = getFinalResult(rrt)
goal_ind = find([rrt.goalReached]==1);
if ~(isempty(goal_ind))
disp('Goal has been reached!');
rrt_goal = rrt(goal_ind);
value = min([rrt_goal.cost]);
min_node_ind = find([rrt.cost]==value);
if length(min_node_ind)>1
min_node_ind = min_node_ind(1);
end
else
disp('Goal has not been reached!');
for i =1:length(rrt)
norm_rrt(i) = norm(p_goal-rrt(i).p);
end
[value,min_node_ind]= min(norm_rrt);
value = rrt(min_node_ind).cost;
end
end
% if it is obstacle-free, return 1.
% otherwise, return 0
function free=isObstacleFree(node_free)
free = 1;
for i = 1: length(param.obstacles(:,1))
obstacle = param.obstacles(i,:);
op1 = [obstacle(1), obstacle(2)];
op2 = [op1(1)+obstacle(3), op1(2)];
op3 = [op2(1), op1(2) + obstacle(4)];
op4 = [op1(1), op3(2)];
nx = node_free(1);
ny = node_free(2);
if ((nx>=op1(1) && nx<=op2(1)) && (ny>=op1(2) && ny<=op4(2)))
free = 0;
end
end
end
function new_node=steering(nearest_node, random_node)
dist = norm(random_node-nearest_node);
ratio_distance = param.step_size/dist;
x = (1-ratio_distance).* nearest_node(1)+ratio_distance .* random_node(1);
y = (1-ratio_distance).* nearest_node(2)+ratio_distance .* random_node(2);
new_node = [x;y];
end
function rrt = reWire(rrt, neighbors, parent, new)
for i=1:length(neighbors)
cost = rrt(new).cost + norm(rrt(neighbors(i)).p - rrt(new).p);
if (cost<rrt(neighbors(i)).cost)
% if norm(rrt(new).p-rrt(neighbors(i)).p)<param.step_size
% % plot(rrt(neighbors(i)).p(1), rrt(neighbors(i)).p(2), '.b');
% rrt(neighbors(i)).p = steering(rrt(new).p, rrt(neighbors(i)).p);
% end
% plot(rrt(neighbors(i)).p(1), rrt(neighbors(i)).p(2), '.m');
rrt(neighbors(i)).iPrev = new;
rrt(neighbors(i)).cost = cost;
end
end
end
function rrt = insertNode(rrt, parent, new_node)
rrt(end+1) = struct(field1, new_node, field2, parent, field3, rrt(parent).cost + norm(rrt(parent).p-new_node), field4, 0);
end
function parent = chooseParent(rrt, neighbors, nearest, new_node)
min_cost = getCostFromRoot(rrt, nearest, new_node);
parent = nearest;
for i=1:length(neighbors)
cost = getCostFromRoot(rrt, neighbors(i), new_node);
if (cost<min_cost)
min_cost = cost;
parent = neighbors(i);
end
end
end
function cost = getCostFromRoot(rrt, parent, child_node)
cost = rrt(parent).cost + norm(child_node - rrt(parent).p);
end
function neighbors = getNeighbors(rrt, node)
neighbors = [];
for i = 1:length(rrt)
dist = norm(rrt(i).p-node);
if (dist<=param.neighbourhood)
neighbors = [neighbors i];
end
end
end
function node = getSample()
x = 0;
y = 0;
a = 0;
b = 200;
node = [x;y];
node(1) = (b-a) * rand(1) + a;
node(2) = (b-a) * rand(1) + a;
end
function indx = findNearest(rrt, n)
mindist = norm(rrt(1).p - n);
indx = 1;
for i = 2:length(rrt)
dist = norm(rrt(i).p - n);
if (dist<mindist)
mindist = dist;
indx = i;
end
end
end
end