-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
298 lines (251 loc) · 11.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
from data_handling.logger import print_and_log
def run_testing(args, device, model, save_subfolder, test_loader, logger):
if args.verbose:
print('Testing model')
model.load_state_dict(torch.load(os.path.join(save_subfolder, 'model_final.pth'))['state_dict'])
test_loss, test_acc = evaluate(args, model, device, test_loader, is_test_set=True)
logger.log_no_step("test_loss", test_loss)
logger.log_no_step("test_acc", test_acc)
def run_eval(args, device, model, save_subfolder, test_loader, logger):
if args.verbose:
print('Testing model')
# model.load_state_dict(torch.load(os.path.join(save_subfolder, 'model_final.pth'))['state_dict'])
test_loss, test_acc = evaluate(args, model, device, test_loader, is_test_set=True)
logger.log_no_step("eval_loss", test_loss)
logger.log_no_step("eval_acc", test_acc)
def run_pruning(args, device, model, test_loader):
if args.verbose:
print('Testing model')
# model.load_state_dict(torch.load(os.path.join(save_subfolder, 'model_final.pth'))['state_dict'])
test_loss, test_acc = evaluate(args, model, device, test_loader, is_test_set=True)
return test_loss, test_acc
def run_training(args, best_acc, device, lr_scheduler, mask, model, optimizer, save_subfolder, train_loader,
valid_loader, logger):
if mask is not None:
save_checkpoint(args, {
'epoch': 0,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
"masks": mask.masks},
filename=os.path.join("./save", 'model_start.pth'))
else:
save_checkpoint(args, {
'epoch': 0,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
filename=os.path.join("./save", 'model_start.pth'))
for epoch in range(1, args.epochs * args.multiplier + 1):
t0 = time.time()
train_loss, train_acc, stopped, singular_metrics = train(args, model, device, train_loader, optimizer, epoch,
mask,
args.manual_stop, valid_loader, logger)
lr_scheduler.step()
metrics = {"val_loss": np.nan,
"val_acc": np.nan,
"train_loss": train_loss,
"train_acc": train_acc,
"epoch": epoch
}
for key in singular_metrics:
metrics[key] = singular_metrics[key]
print("{}:{}".format(key, singular_metrics[key]))
if args.valid_split > 0.0:
val_loss, val_acc = evaluate(args, model, device, valid_loader)
metrics["val_loss"] = val_loss
metrics["val_acc"] = val_acc
if metrics["val_acc"] != np.nan and (metrics["val_acc"] > best_acc):
if args.verbose:
print('Saving model')
best_acc = metrics["val_acc"]
save_checkpoint(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, filename=os.path.join(save_subfolder, 'model_final.pth'))
if mask is not None:
metrics["running_death_rate"] = mask.death_rate
if mask.running_layer_density is not None:
metrics.update(mask.running_layer_density)
logger.log(metrics)
if args.verbose:
print_and_log('Current learning rate: {0}. Time taken for epoch: {1:.2f} seconds.\n'.format(
optimizer.param_groups[0]['lr'], time.time() - t0))
if args.manual_stop and stopped:
break
if not args.manual_stop:
if mask is None:
save_checkpoint(args, {
'epoch': args.epochs * args.multiplier,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, filename=os.path.join(save_subfolder, 'model_last.pth'))
else:
save_checkpoint(args, {
'epoch': args.epochs * args.multiplier,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'masks': mask.masks,
}, filename=os.path.join(save_subfolder, 'model_last.pth'))
else:
save_checkpoint(args, {
'epoch': args.epochs * args.multiplier,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
"masks": mask.masks,
"grads": mask.grads_at_update,
"weights": mask.weights_at_update,
"scores": mask.scores_at_update,
"masks_before": mask.masks_at_update
}, filename=os.path.join("./save", 'model_last.pth'))
def resume(args, device, model, optimizer, test_loader):
if os.path.isfile(args.resume):
if args.verbose:
print_and_log("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if args.verbose:
print_and_log("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
print_and_log('Testing...')
evaluate(args, model, device, test_loader)
model.feats = []
model.densities = []
else:
if args.verbose:
print_and_log("=> no checkpoint found at '{}'".format(args.resume))
def save_checkpoint(args, state, filename='checkpoint.pth.tar'):
if args.save_checkpoint:
print("SAVING")
torch.save(state, filename)
def train(args, model, device, train_loader, optimizer, epoch, mask=None, manual_stop=False, test_loader=None,
logger=None):
train_len = len(train_loader)
model.train()
train_loss = 0
correct = 0
n = 0
stopped = False
# global gradient_norm
if args.record_jacobian:
assert model.last == "logits", "computing jacobian only works with logits"
before_update = {}
after_update = {}
singular_metrics = {}
for batch_idx, (data_in, target) in enumerate(train_loader):
data, target = data_in.to(device), target.to(device)
if batch_idx == 0 and args.record_jacobian:
data = data.view((data.shape[0], -1))
data.requires_grad_(True)
dx = torch.autograd.functional.jacobian(lambda t_: model(t_), data).detach()
# TODO: does not work for convolutions, needs and "if"
J = torch.zeros((data.shape[0], model.output_dim, data.shape[1]))
for i in range(data.shape[0]):
J[i, :, :] = dx[i, :, i, :]
U, S, Vh = torch.svd(J, compute_uv=False)
mean_sing = torch.mean(S).numpy().item()
max_sing = torch.max(S).numpy().item()
min_sing = torch.min(S).numpy().item()
var_sing = torch.var(S).numpy().item()
singular_metrics = {
"mean_s": mean_sing,
"max_s": max_sing,
"min_s": min_sing,
"var_s": var_sing
}
data = data_in.to(device)
if args.fp16: data = data.half()
optimizer.zero_grad()
output = model(data)
if args.data == 'higgs':
loss = F.binary_cross_entropy_with_logits(output, target.unsqueeze(1))
pred = torch.round(torch.sigmoid(output))
else:
loss = F.cross_entropy(output, target) if model.last == "logits" else F.nll_loss(output, target)
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
if args.log_every_iter:
metrics = {"loss": loss.item(),
"iter": batch_idx+int(train_len/args.batch_size)*epoch}
logger.log(metrics)
train_loss += loss.item()
correct += pred.eq(target.view_as(pred)).sum().item()
n += target.shape[0]
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if mask is not None:
if mask.opt_order == "before":
mask.optimizer.step()
mask.apply_mask()
if mask.prune_every_k_steps is not None and (
mask.steps + 1) % mask.prune_every_k_steps == 0 and test_loader is not None:
# if we WILL make and update in the next step save the current val loss and accuracy
with torch.no_grad():
val_loss, val_accuracy = evaluate(args, model, device, test_loader)
before_update["bf_val_loss"] = val_loss
before_update["bf_val_acc"] = val_accuracy
model.train()
mask.step()
if mask is not None and mask.prune_every_k_steps is not None and (
mask.steps) % mask.prune_every_k_steps == 0 and test_loader is not None:
# if we HAD make and update in the next step save the current val loss and accuracy
with torch.no_grad():
val_loss, val_accuracy = evaluate(args, model, device, test_loader)
before_update["af_val_loss"] = val_loss
before_update["af_val_acc"] = val_accuracy
if logger is not None:
logger.log(before_update)
model.train()
if mask.opt_order == "after":
if not mask.manual_stop:
mask.optimizer.step()
mask.apply_mask()
else:
optimizer.step()
if batch_idx % args.log_interval == 0:
print_and_log('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} Accuracy: {}/{} ({:.3f}% '.format(
epoch, batch_idx * len(data), len(train_loader) * args.batch_size,
100. * batch_idx / len(train_loader), loss.item(), correct, n, 100. * correct / float(n)))
if mask is not None and mask.after_at_least_one_prune and manual_stop:
stopped = True
break
# training summary
print_and_log('\n{}: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
'Training summary',
train_loss / batch_idx, correct, n, 100. * correct / float(n)))
return train_loss / batch_idx, 100. * correct / float(n), stopped, singular_metrics
def evaluate(args, model, device, test_loader, is_test_set=False):
model.eval()
test_loss = 0
correct = 0
n = 0
with torch.no_grad():
for data, target in test_loader:
# target = target.to(torch.int64)
data, target = data.to(device), target.to(device)
if args.fp16: data = data.half()
model.t = target
output = model(data)
if args.data == 'higgs':
test_loss_p = F.binary_cross_entropy_with_logits(output, target.unsqueeze(1), reduction='sum')
pred = torch.round(torch.sigmoid(output))
else:
test_loss_p = F.cross_entropy(output, target,
reduction='sum') if model.last == "logits" else F.nll_loss(output, target,
reduction='sum')
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
test_loss += test_loss_p.item() # sum up batch loss
correct += pred.eq(target.view_as(pred)).sum().item()
n += target.shape[0]
test_loss /= float(n)
print_and_log('\n{}: Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
'Test evaluation' if is_test_set else 'Evaluation',
test_loss, correct, n, 100. * correct / float(n)))
return test_loss, 100. * correct / float(n)