-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcshfactor1.tex
135 lines (109 loc) · 13.3 KB
/
cshfactor1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
\documentclass[csh.tex]{subfiles}
\begin{document}
\section{Cofibrations}
This section show that the cofibrations from definition \ref{cofibration} are part of an enriched factorization system (see definition \ref{enriched factorization system}) on all of $\ambient\s$ instead of just on the subcategory of complexes.
\begin{lemma} Cofibrations and acyclic fibrations form an enriched factorization system on $\ambient\s$. \label{factorization system 1} \end{lemma}
\begin{proof} Proposition \ref{factor1} shows that every morphism factors as a \emph{contractible morphism} (see definition \ref{contractible}) following a cofibration. Acyclic fibrations are examples of contractible morphisms (see lemma \ref{acyclic means contractible}). Lemma \ref{Reedy} shows that contractible morphisms are acyclic fibrations. Hence contractible morphisms and acyclic fibrations are the same class of morphism and this class form the right class of a factorization system with cofibrations on the left (see definition \ref{enriched factorization system}).
\end{proof}
\begin{definition} Let $\nno\disc\ri$ be the constant family functor $\ambient\s\to\ambient\s/\nno\disc$.
A morphism $f\of X\to Y$ is \keyword{contractible} if $\nno\ri(f)$ has the $\ambient/\nno$-enriched right lifting property with respect to the \emph{family of cycle inclusions}, which is defined as follows.
The simplicial sets $\simplex_\nno$ and $\cycle_\nno$ satisfy:
\begin{align*}
\base(\simplex_\nno) &= \Ar(\simCat) \\
\base(\cycle_\nno) &= \set{\phi\of\Ar(\simCat)\middle|\exists i\of\nno.i\leq \cod(\phi),\forall j\of \dom(\phi).\phi(j)\neq i} \\
\dim(\phi) &= \dom(\phi) \\
\phi\cdot \xi &=\phi\circ\xi
\end{align*}
By these definitions $\cycle_\nno$ is a subobject of $\simplex_\nno$. The formula $\function{\phi}\tuplet{\dom(\phi),\cod(\phi)}$ defined morphisms of simplices $\cycle_\nno\to \nno\disc$ and $\simplex_\nno\to \nno\disc$ that commute with the inclusion, which is therefore a monomorphism of $\ambient\s/\nno\disc$. This inclusion is the family of cycle inclusions.
\end{definition}
\begin{lemma} Every acyclic fibration is a contractible morphism. \label{acyclic means contractible} \end{lemma}
\begin{proof}
Let $f\of X\to Y$ be an arbitrary acyclic fibration, let $k\of\cycle_\nno\to\simplex_\nno$ be the family of cycle inclusions and
let $\hom_\nno\of(\ambient\s/\nno\disc\dual\times \ambient\s/\nno\disc)\to \ambient/\nno$ be the enrichment of $\ambient\s/\nno\disc$ over $\ambient\nno$.
The category $\ambient/\nno$ has an object that represents all lifting problems involving cycle inclusions and $f$.
\[ p\of P\to \nno = \set{\tuplet{a,b}\of \hom_\nno(\cycle_\nno,\nno\ri(X))\times \hom_\nno(\simplex_\nno,\nno\ri(Y)) \middle|f\circ a = b\circ k} \]
The simplicial sets $\simplex_P$ and $\cycle_P$ satisfy:
\begin{align*}
\base(\simplex_P) &= \set{ \tuplet{\phi,x}\of\Ar(\simCat)\times P | \cod(\phi) = p(x) } \\
\base(\cycle_P) &= \set{\tuplet{\phi,x}\of\base(\simplex_P)\middle|\exists i\of\nno.i\leq \cod(\phi),\forall j\of \dom(\phi).\phi(j)\neq i} \\
\dim\tuplet{\phi,x} &= \dom(\phi) \\
\tuplet{\phi,x}\cdot \xi &=\phi\circ\xi
\end{align*}
The inclusion $k_P\of\cycle_P\to\simplex_P$ is a cofibration for the following reasons.
A simplex $\tuplet{\phi,x}\of\simplex_P$ is outside the image of $k_P$ if $\phi$ is epic and nondegenerate if $\phi = \id_{[n]}$ for some $n\of \nno$. This is a decidable property as required.
For each $n\of\nno$ the members of the fibre $P[n]$ of $p$ over $n$ are pairs $\tuplet{a,b}$ where $a\of\cycle[n]\to X$ and $b\of \simplex[n]\to Y$ satisfy $f\circ a = b \circ k_n$. Here $\cycle[n]$ and $\simplex[n]$ are fibres over $n$ of the families. Define $a_P\of \cycle_P\to X$ and $b_P\of \cycle_P\to X$ as follows.
\begin{align*}
a_P\tuplet{\phi,\tuplet{a,b}} &= a(\phi)\\
b_P\tuplet{\phi,\tuplet{a,b}} &= b(\phi)
\end{align*}
This way $f\circ a_P = b_P\circ k_P$ and since $f$ is an acyclic fibration, there is a $c_P\of \simplex_P\to X$ such that $f\circ c_P = b_P$ and $c_P\circ k_P = a_P$. This is the key.
Back in $\ambient/\nno$, $c_P$ induces a morphism $p\to\hom_\nno(\simplex_\nno,\nno\ri(X))$, which is a section to the canonical morphism $\function c\tuplet{\nno\ri(f)\circ c,c\circ k}$ and hence a filler for $k$ against $\nno\ri(f)$. Therefore $f$ is contractible.
\end{proof}
\begin{proposition} Every morphism factors as a contractible morphism following a cofibration. \label{factor1} \end{proposition}
\begin{proof}
Let $\simCat^+$ be the subcategory of monomorphisms and $\simCat^-$ that of epimorphisms of $\simCat$ (see definition \ref{category of simplices}). For each morphism $\phi$ of $\simCat$ let $m(\phi)$ be the monic and $e(\phi)$ the epic factors.
The first step is to cover $Y$ with another simplicial set $LY$ where degeneracy is decidable. Define the simplicial set $LY$ as follows.
\begin{align*}
\base(LY) &= \set{\tuplet{\epsilon,y}\of \Ar(\simCat^-)\times Y\middle| \cod(\epsilon)=\dim(y)}\\
\dim(\tuplet{\epsilon,y}) &= \dom(\epsilon)\\
\tuplet{\epsilon,y}\cdot \phi &= \tuplet{e(\epsilon\circ \phi),y\cdot m(\epsilon\circ\phi)}
\end{align*}
A pair $\tuplet{\epsilon,y}$ is a face of $LY$ if and only if $\epsilon=\id$ and equality is a decidable property of morphisms in $\simCat$.
Let $l_Y\of LY\to Y$ satisfy $l_Y\tuplet{\epsilon,y}=y\cdot\epsilon$.
\hide{ $l_Y$ may be an equivalence, but not an acyclic fibration in a constructive way }
The second step glues simplices from $X$ and $LY$ together.
The pair $(f,l_Y)$ stands for the morphism $X+LY\to Y$ that satisfies $(f,l_Y)(x)=f(x)$ for $x\of X$ and $(f,l_Y)(y) = l_Y(y)$ for $y\of LY$.
Let $Z[n]\subseteq \product{i\of[n]}{(X[i]+LY[i])^{\simCat^+([i],[n])}}$ (where $\simCat^+([i],[n])$ is the object of monomorphisms $[i]\to [n]$) consist of elements $z$ which satisfy the following conditions for all $\alpha\of [j]\to [k]$ and $\beta\of [i]\to[j]$ in $\simCat^+$.
\begin{enumerate}
\item $(f,l_Y)(z(\alpha\circ\beta)) = (f,l_Y)(z(\alpha))\cdot\beta$;
\item if $z(\alpha)\of X$ then $z(\alpha\circ\beta)\of X$;
\item if $z(\alpha)=\tuplet{\epsilon,y}\of LY$ then $z(\alpha\circ\beta) = \tuplet{\epsilon,y}\cdot\beta$ unless $\epsilon\circ\beta$ is monic.
\end{enumerate}
For $\phi\of[m]\to [n]$ and $z\of Z[n]$, let $z\cdot\phi$ satisfy the following equation for all $\alpha$ of $\simCat^+$.
\[ (z\cdot\phi)(\alpha) = z(m(\phi\circ\alpha))\cdot e(\phi\circ \alpha) \]
By these definitions, $Z=(\coproduct{n\of\nno}{Z[n]},\function{\tuplet{n,z}}n,\cdot)$ is a simplicial object.
Let $g\of X\to Z$ satisfy $g(x)(\alpha) = x\cdot\alpha$. It is a cofibration because a $z\of\base Z$ is in the image of $X$ if $z(\id_{[n]})\of X$ by condition 2, degenerate if $z(\id_{[n]})=\tuplet{\epsilon,y}\of LY$ with $\epsilon\neq \id_{[n]}$ because of condition 3,
and a face outside of the image of $g$ if $z(\id_{[n]})=\tuplet{\id_{[n]},y}\of LY$. Moreover, it is decidable which option holds.
Let $h\of Z\to Y$ satisfy $h(z) = (f,l_Y)(z(\id_{[\dim(z)]}))$. This morphism is contractible thanks to the following filler construction.
Let $k\of\cycle_\nno\to\simplex_\nno$ be the family of cycle inclusions and let $a\of \cycle_\nno\to Z$ and $b\of \simplex_\nno\to Y$ satisfy $h\circ a = b\circ k$. Since $k$ is essentially the the subobject of nonepic morphisms of $\simCat$ a filler $c$ can be defined as follows.
Let $c\of \simplex_\nno\to Z$ satisfy $c(\phi)(\mu) = \tuplet{\phi,b(\mu)}$ if $\phi$ is epic and $c(\phi) = a(\phi)$ for $\phi$ in the image of $k$. By this definition $c\circ k = a$ and $h\circ c = b$.\end{proof}\hide{ Codomains of contractibles may have a distance function that gives a lower bound to the number of compositions required to to reach it. I don't have time to work that out and check it right now.}
\begin{remark} The construction is the proof of lemma \ref{factor1} are related to Reedy model structures \citep{Reedy74}. In the ambient category $\ambient$ morphisms factor as split epimorphism following decidable monomorphisms thanks to coproducts. Cofibrations are lifted versions of decidable monomorphisms and contractible fibrations are lifted versions of split epimorphisms and they form a factorization system on $\ambient\s$ by a similar construction. Unfortunately, external induction is not strong enough to proof things in the internal language of $\ambient$.
\end{remark}
\begin{lemma} Contractible morphisms are acyclic fibrations.\label{Reedy}\end{lemma}
\begin{proof}
Suppose $c\of I\to J$ is a cofibration and $F$ is the decidable subobject of faces outside the image of $c$.
Define the following $\nno$-indexed family of subobjects of $J$.
\begin{align*}
K &= (\nno\disc\times \set{c(i)| i\of I})\cup\set{ \tuplet{n,j}\of \nno\disc\times J \middle| \exists f\of F_{<n}, \xi\of\Ar(\simCat).f\cdot \xi = j }\\
&\textrm{where } F_{<n} = \set{f\of F|\dim(f) < n}
\end{align*}
For every $n\of \nno$ and all $j\of J$ with $\dim(j) < n$, $\tuplet{n,j}\of K$ as shown by the following induction argument. The base case $n=0$ is trivial because $\set{j\of J|\dim(j)<0}$ is empty. Assume $n = m+1$, $j\of J$ and $\dim(j)=m$ and assume that all $\tuplet{m,j'}\of K$ for all $j'\of J$ with $\dim(j') \leq m$. By definition of cofibration, either $j\of F$, $j\of \set{c(i)|i\of I}$ or $j=j'\cdot\epsilon$, where $\epsilon$ is epic and different from $\id$. The first two directly imply $\tuplet{n,j}\of J$. In the third, $\dim(j') < m$ because of $\epsilon$. Therefore $\tuplet{m,j'}$ and hence $\tuplet{m,j}\of K$. Since $F_{<m}\subseteq F_{<n}$, $\tuplet{n,j}\of K$ as well.
Let $f\of X\to Y$ is any morphism of $\ambient\s$. The successor function $s\of \nno\to\nno$ induces a endofunctor $s\ri$ of $\ambient\s/\nno\disc\to$ and a natural transformation $\sigma_X\of X \to s\ri(X)$. If $\nno\ri(f)$ has the right lifting property with respect to$\sigma_K$, then $f$ has the right lifting property with respect to $c\of I\to J$ for the following reasons. A filler operator for is an $\nno$-indexed morphism
$p_n \of \hom(K_n,X)\times_{\hom(K_n,Y)}\hom(K_{n+1},Y) \to \hom(K_{n+1},X)$ that satisfies
$p_n\tuplet{a,b}\circ \sigma_{K,n} = a$ and $f\circ p_n\tuplet{a,b} = b$ for all $\tuplet{a,b}$ in its domain.
Here $K_n$ stands for the fibre of the projection $\function{\tuplet{i,j}}i\of K\to\nno\disc$ over the point $n\of \nno$.
Define $q_n\of\hom(K_0,X)\times_{\hom(K_0,Y)}\hom(J,Y)\to \hom(K_n,X)$ as follows:
\begin{align*}
q_0\tuplet{a,b} &= a\\
q_{n+1}\tuplet{a,b} &= p_n(q_n\tuplet{a,b},b\circ (\function{\tuplet{i,j}}j))
\end{align*}
Since every $j\of J$ is in $K_n$ for some $n\of\nno$ and $q_{n+1}\tuplet{a,b}(j) = q_n\tuplet{a,b}(j)$ if $j\of K_n$, the join of the $q_n$ is a morphism $q_\omega\of\hom(K_0,X)\times_{\hom(K_0,Y)}\hom(J,Y)\to \hom(J,X)$. This morphism satisfies $f\circ q_\omega\tuplet{a,b} = b$.
The morphism $c\of I \to K_0 = \set{c(i)|i\of I}$ is an isomorphism since cofibrations are monic. For all $a\of I\to X$ and $b\of J\to Y$ such that $f\circ a = b\circ c$, $q_\omega\tuplet{a\circ c^{-1},b}\circ c = a\circ c^{-1}\circ c = a$. Hence $\function{\tuplet{a,b}}q_\omega\tuplet{a\circ c^{-1},b}$ is a filler for $c$ against $f$.
\hide{Notation may need some work, but the argument is now correct}
The simplicial sets $\simplex_F$ and $\cycle_F$ satisfy:
\begin{align*}
\base(\simplex_F) &= \set{ \tuplet{\phi,x}\of\Ar(\simCat)\times F | \cod(\phi) = \dim(x) } \\
\base(\cycle_F) &= \set{\tuplet{\phi,x}\of\base(\simplex_F)\middle|\exists i\of\nno.i\leq \cod(\phi),\forall j\of \dom(\phi).\phi(j)\neq i} \\
\dim\tuplet{\phi,x} &= \dom(\phi) \\
\tuplet{\phi,x}\cdot \xi &=\phi\circ\xi
\end{align*}
The morphism $\sigma_K$ is a pushout of the inclusion $k_F\of\cycle_F\to\simplex_F$, along $\function{\tuplet{\phi,f}}\tuplet{\dim(f),f\cdot \phi}$, for the following reasons. Let $p\of K \to X$ and $q\of \simplex_F\to X$ satisfy $p\circ \function{\tuplet{\phi,f}}\tuplet{\dim(f),f\cdot \phi} = q\circ k_F$.
The factorization $\tuplet{p,q}\of s\ri(K)\to X$ of $p$ and $q$ through $s\ri(K)$ satisfies $\tuplet{p,q}\circ \sigma_K = p$ and $\tuplet{p,q}\circ \function{\tuplet{\phi,f}}\tuplet{\dim(f)+1,f\cdot \phi} = q$.
For each $\tuplet{n,j}\of s\ri(K)$, $j = c(i)$ for $i\of I$ or $j = f\cdot \phi$ for $f\of F$ with $\dim(f)\leq n$. If $j=c(i)$ then $\tuplet{p,q}(\tuplet{n,j}) = p(\tuplet{n-1,j})$. If $j = f\cdot \phi$ then $n=\dom(\phi)+1$ and $\tuplet{p,q}(\tuplet{n,j}) = q(\tuplet{\id,f})\cdot\phi$, which demonstrates existence.
If $c(i)=f\cdot\phi$, then $\phi$ cannot be an epimorphism, since epimorphisms have right inverses and that would put $f$ in the image of $c$ where it is not by definition \ref{cofibration}. Hence $\tuplet{\phi,f}\of\cycle_F$ and $p(\tuplet{\dom(\phi),c(i)})=q(\tuplet{\phi,f}) = q(\tuplet{\id,f})\cdot\phi$. This proves uniqueness and existence of $\tuplet{p,q}$.
If $f\of X\to Y$ is any morphism of $\ambient$, then $\nno\ri(f)$ has the right lifting property with respect to $\sigma_K$ if it has the left lifting property with respect to $k_F$.
The last step is the lifting property with respect to $k_F$. The morphism $k_F$ is the \keyword{tensor} of $k_\nno\of\cycle_\nno\to\simplex_\nno$ for the object $\dim\of F\to\nno$ of $\ambient/\nno$. This means $F\times \hom(X,Y) = \hom(F\otimes X,Y)$.
The power construction preserves split epimorphisms and hence fillers. Therefore $\nno\ri(f)$ has a filler for $k_F$ it it has one for $k_\nno$.
So if $f$ is contractible, $\nno\ri(f)$ has the right lifting property with respect to all tensors of $k_\nno$, their pushouts and all the induced transfinite compositions. These include all cofibrations.
\end{proof}
\end{document}