-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExp_inf.v.original
6089 lines (4349 loc) · 171 KB
/
Exp_inf.v.original
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import Coq.Arith.Wf_nat.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import Coq.Program.Equality.
Require Export Metalib.Metatheory.
Require Export Metalib.LibLNgen.
Require Export Exp_ott.
Local Set Warnings "-non-recursive".
(** NOTE: Auxiliary theorems are hidden in generated documentation.
In general, there is a [_rec] version of every lemma involving
[open] and [close]. *)
(* *********************************************************************** *)
(** * Induction principles for nonterminals *)
Scheme ty_mono_ind' := Induction for ty_mono Sort Prop.
Combined Scheme ty_mono_mutind from ty_mono_ind'.
Scheme ty_mono_rec' := Induction for ty_mono Sort Set.
Combined Scheme ty_mono_mutrec from ty_mono_rec'.
Scheme ty_rho_ind' := Induction for ty_rho Sort Prop.
Combined Scheme ty_rho_mutind from ty_rho_ind'.
Scheme ty_rho_rec' := Induction for ty_rho Sort Set.
Combined Scheme ty_rho_mutrec from ty_rho_rec'.
Scheme ty_poly_ind' := Induction for ty_poly Sort Prop.
Combined Scheme ty_poly_mutind from ty_poly_ind'.
Scheme ty_poly_rec' := Induction for ty_poly Sort Set.
Combined Scheme ty_poly_mutrec from ty_poly_rec'.
Scheme tm_ind' := Induction for tm Sort Prop.
Combined Scheme tm_mutind from tm_ind'.
Scheme tm_rec' := Induction for tm Sort Set.
Combined Scheme tm_mutrec from tm_rec'.
(* *********************************************************************** *)
(** * Size *)
Fixpoint size_ty_mono (tau1 : ty_mono) {struct tau1} : nat :=
match tau1 with
| ty_mono_base => 1
| ty_mono_var_f a1 => 1
| ty_mono_var_b n1 => 1
| ty_mono_func tau2 tau3 => 1 + (size_ty_mono tau2) + (size_ty_mono tau3)
end.
Fixpoint size_ty_rho (rho1 : ty_rho) {struct rho1} : nat :=
match rho1 with
| ty_rho_tau tau1 => 1 + (size_ty_mono tau1)
end.
Fixpoint size_ty_poly (sig1 : ty_poly) {struct sig1} : nat :=
match sig1 with
| ty_poly_rho rho1 => 1 + (size_ty_rho rho1)
| ty_poly_poly_gen sig2 => 1 + (size_ty_poly sig2)
end.
Fixpoint size_tm (t1 : tm) {struct t1} : nat :=
match t1 with
| exp_lit i1 => 1
| exp_var_f x1 => 1
| exp_var_b n1 => 1
| exp_abs t2 => 1 + (size_tm t2)
| exp_app t2 u1 => 1 + (size_tm t2) + (size_tm u1)
| exp_typed_abs sig1 t2 => 1 + (size_ty_poly sig1) + (size_tm t2)
| exp_let u1 t2 => 1 + (size_tm u1) + (size_tm t2)
| exp_type_anno t2 sig1 => 1 + (size_tm t2) + (size_ty_poly sig1)
end.
(* *********************************************************************** *)
(** * Degree *)
(** These define only an upper bound, not a strict upper bound. *)
Inductive degree_ty_mono_wrt_ty_mono : nat -> ty_mono -> Prop :=
| degree_wrt_ty_mono_ty_mono_base : forall n1,
degree_ty_mono_wrt_ty_mono n1 (ty_mono_base)
| degree_wrt_ty_mono_ty_mono_var_f : forall n1 a1,
degree_ty_mono_wrt_ty_mono n1 (ty_mono_var_f a1)
| degree_wrt_ty_mono_ty_mono_var_b : forall n1 n2,
lt n2 n1 ->
degree_ty_mono_wrt_ty_mono n1 (ty_mono_var_b n2)
| degree_wrt_ty_mono_ty_mono_func : forall n1 tau1 tau2,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_mono_wrt_ty_mono n1 tau2 ->
degree_ty_mono_wrt_ty_mono n1 (ty_mono_func tau1 tau2).
Scheme degree_ty_mono_wrt_ty_mono_ind' := Induction for degree_ty_mono_wrt_ty_mono Sort Prop.
Combined Scheme degree_ty_mono_wrt_ty_mono_mutind from degree_ty_mono_wrt_ty_mono_ind'.
#[export] Hint Constructors degree_ty_mono_wrt_ty_mono : core lngen.
Inductive degree_ty_rho_wrt_ty_mono : nat -> ty_rho -> Prop :=
| degree_wrt_ty_mono_ty_rho_tau : forall n1 tau1,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_rho_wrt_ty_mono n1 (ty_rho_tau tau1).
Scheme degree_ty_rho_wrt_ty_mono_ind' := Induction for degree_ty_rho_wrt_ty_mono Sort Prop.
Combined Scheme degree_ty_rho_wrt_ty_mono_mutind from degree_ty_rho_wrt_ty_mono_ind'.
#[export] Hint Constructors degree_ty_rho_wrt_ty_mono : core lngen.
Inductive degree_ty_poly_wrt_ty_mono : nat -> ty_poly -> Prop :=
| degree_wrt_ty_mono_ty_poly_rho : forall n1 rho1,
degree_ty_rho_wrt_ty_mono n1 rho1 ->
degree_ty_poly_wrt_ty_mono n1 (ty_poly_rho rho1)
| degree_wrt_ty_mono_ty_poly_poly_gen : forall n1 sig1,
degree_ty_poly_wrt_ty_mono (S n1) sig1 ->
degree_ty_poly_wrt_ty_mono n1 (ty_poly_poly_gen sig1).
Scheme degree_ty_poly_wrt_ty_mono_ind' := Induction for degree_ty_poly_wrt_ty_mono Sort Prop.
Combined Scheme degree_ty_poly_wrt_ty_mono_mutind from degree_ty_poly_wrt_ty_mono_ind'.
#[export] Hint Constructors degree_ty_poly_wrt_ty_mono : core lngen.
Inductive degree_tm_wrt_tm : nat -> tm -> Prop :=
| degree_wrt_tm_exp_lit : forall n1 i1,
degree_tm_wrt_tm n1 (exp_lit i1)
| degree_wrt_tm_exp_var_f : forall n1 x1,
degree_tm_wrt_tm n1 (exp_var_f x1)
| degree_wrt_tm_exp_var_b : forall n1 n2,
lt n2 n1 ->
degree_tm_wrt_tm n1 (exp_var_b n2)
| degree_wrt_tm_exp_abs : forall n1 t1,
degree_tm_wrt_tm (S n1) t1 ->
degree_tm_wrt_tm n1 (exp_abs t1)
| degree_wrt_tm_exp_app : forall n1 t1 u1,
degree_tm_wrt_tm n1 t1 ->
degree_tm_wrt_tm n1 u1 ->
degree_tm_wrt_tm n1 (exp_app t1 u1)
| degree_wrt_tm_exp_typed_abs : forall n1 sig1 t1,
degree_tm_wrt_tm (S n1) t1 ->
degree_tm_wrt_tm n1 (exp_typed_abs sig1 t1)
| degree_wrt_tm_exp_let : forall n1 u1 t1,
degree_tm_wrt_tm n1 u1 ->
degree_tm_wrt_tm (S n1) t1 ->
degree_tm_wrt_tm n1 (exp_let u1 t1)
| degree_wrt_tm_exp_type_anno : forall n1 t1 sig1,
degree_tm_wrt_tm n1 t1 ->
degree_tm_wrt_tm n1 (exp_type_anno t1 sig1).
Inductive degree_tm_wrt_ty_mono : nat -> tm -> Prop :=
| degree_wrt_ty_mono_exp_lit : forall n1 i1,
degree_tm_wrt_ty_mono n1 (exp_lit i1)
| degree_wrt_ty_mono_exp_var_f : forall n1 x1,
degree_tm_wrt_ty_mono n1 (exp_var_f x1)
| degree_wrt_ty_mono_exp_var_b : forall n1 n2,
degree_tm_wrt_ty_mono n1 (exp_var_b n2)
| degree_wrt_ty_mono_exp_abs : forall n1 t1,
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono n1 (exp_abs t1)
| degree_wrt_ty_mono_exp_app : forall n1 t1 u1,
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono n1 u1 ->
degree_tm_wrt_ty_mono n1 (exp_app t1 u1)
| degree_wrt_ty_mono_exp_typed_abs : forall n1 sig1 t1,
degree_ty_poly_wrt_ty_mono n1 sig1 ->
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono n1 (exp_typed_abs sig1 t1)
| degree_wrt_ty_mono_exp_let : forall n1 u1 t1,
degree_tm_wrt_ty_mono n1 u1 ->
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono n1 (exp_let u1 t1)
| degree_wrt_ty_mono_exp_type_anno : forall n1 t1 sig1,
degree_tm_wrt_ty_mono n1 t1 ->
degree_ty_poly_wrt_ty_mono n1 sig1 ->
degree_tm_wrt_ty_mono n1 (exp_type_anno t1 sig1).
Scheme degree_tm_wrt_tm_ind' := Induction for degree_tm_wrt_tm Sort Prop.
Combined Scheme degree_tm_wrt_tm_mutind from degree_tm_wrt_tm_ind'.
Scheme degree_tm_wrt_ty_mono_ind' := Induction for degree_tm_wrt_ty_mono Sort Prop.
Combined Scheme degree_tm_wrt_ty_mono_mutind from degree_tm_wrt_ty_mono_ind'.
#[export] Hint Constructors degree_tm_wrt_tm : core lngen.
#[export] Hint Constructors degree_tm_wrt_ty_mono : core lngen.
(* *********************************************************************** *)
(** * Local closure (version in [Set], induction principles) *)
Inductive lc_set_ty_mono : ty_mono -> Set :=
| lc_set_ty_mono_base :
lc_set_ty_mono (ty_mono_base)
| lc_set_ty_mono_var_f : forall a1,
lc_set_ty_mono (ty_mono_var_f a1)
| lc_set_ty_mono_func : forall tau1 tau2,
lc_set_ty_mono tau1 ->
lc_set_ty_mono tau2 ->
lc_set_ty_mono (ty_mono_func tau1 tau2).
Scheme lc_ty_mono_ind' := Induction for lc_ty_mono Sort Prop.
Combined Scheme lc_ty_mono_mutind from lc_ty_mono_ind'.
Scheme lc_set_ty_mono_ind' := Induction for lc_set_ty_mono Sort Prop.
Combined Scheme lc_set_ty_mono_mutind from lc_set_ty_mono_ind'.
Scheme lc_set_ty_mono_rec' := Induction for lc_set_ty_mono Sort Set.
Combined Scheme lc_set_ty_mono_mutrec from lc_set_ty_mono_rec'.
#[export] Hint Constructors lc_ty_mono : core lngen.
#[export] Hint Constructors lc_set_ty_mono : core lngen.
Inductive lc_set_ty_rho : ty_rho -> Set :=
| lc_set_ty_rho_tau : forall tau1,
lc_set_ty_mono tau1 ->
lc_set_ty_rho (ty_rho_tau tau1).
Scheme lc_ty_rho_ind' := Induction for lc_ty_rho Sort Prop.
Combined Scheme lc_ty_rho_mutind from lc_ty_rho_ind'.
Scheme lc_set_ty_rho_ind' := Induction for lc_set_ty_rho Sort Prop.
Combined Scheme lc_set_ty_rho_mutind from lc_set_ty_rho_ind'.
Scheme lc_set_ty_rho_rec' := Induction for lc_set_ty_rho Sort Set.
Combined Scheme lc_set_ty_rho_mutrec from lc_set_ty_rho_rec'.
#[export] Hint Constructors lc_ty_rho : core lngen.
#[export] Hint Constructors lc_set_ty_rho : core lngen.
Inductive lc_set_ty_poly : ty_poly -> Set :=
| lc_set_ty_poly_rho : forall rho1,
lc_set_ty_rho rho1 ->
lc_set_ty_poly (ty_poly_rho rho1)
| lc_set_ty_poly_poly_gen : forall sig1,
(forall a1 : tyvar, lc_set_ty_poly (open_ty_poly_wrt_ty_mono sig1 (ty_mono_var_f a1))) ->
lc_set_ty_poly (ty_poly_poly_gen sig1).
Scheme lc_ty_poly_ind' := Induction for lc_ty_poly Sort Prop.
Combined Scheme lc_ty_poly_mutind from lc_ty_poly_ind'.
Scheme lc_set_ty_poly_ind' := Induction for lc_set_ty_poly Sort Prop.
Combined Scheme lc_set_ty_poly_mutind from lc_set_ty_poly_ind'.
Scheme lc_set_ty_poly_rec' := Induction for lc_set_ty_poly Sort Set.
Combined Scheme lc_set_ty_poly_mutrec from lc_set_ty_poly_rec'.
#[export] Hint Constructors lc_ty_poly : core lngen.
#[export] Hint Constructors lc_set_ty_poly : core lngen.
Inductive lc_set_tm : tm -> Set :=
| lc_set_exp_lit : forall i1,
lc_set_tm (exp_lit i1)
| lc_set_exp_var_f : forall x1,
lc_set_tm (exp_var_f x1)
| lc_set_exp_abs : forall t1,
(forall x1 : tmvar, lc_set_tm (open_tm_wrt_tm t1 (exp_var_f x1))) ->
lc_set_tm (exp_abs t1)
| lc_set_exp_app : forall t1 u1,
lc_set_tm t1 ->
lc_set_tm u1 ->
lc_set_tm (exp_app t1 u1)
| lc_set_exp_typed_abs : forall sig1 t1,
lc_set_ty_poly sig1 ->
(forall x1 : tmvar, lc_set_tm (open_tm_wrt_tm t1 (exp_var_f x1))) ->
lc_set_tm (exp_typed_abs sig1 t1)
| lc_set_exp_let : forall u1 t1,
lc_set_tm u1 ->
(forall x1 : tmvar, lc_set_tm (open_tm_wrt_tm t1 (exp_var_f x1))) ->
lc_set_tm (exp_let u1 t1)
| lc_set_exp_type_anno : forall t1 sig1,
lc_set_tm t1 ->
lc_set_ty_poly sig1 ->
lc_set_tm (exp_type_anno t1 sig1).
Scheme lc_tm_ind' := Induction for lc_tm Sort Prop.
Combined Scheme lc_tm_mutind from lc_tm_ind'.
Scheme lc_set_tm_ind' := Induction for lc_set_tm Sort Prop.
Combined Scheme lc_set_tm_mutind from lc_set_tm_ind'.
Scheme lc_set_tm_rec' := Induction for lc_set_tm Sort Set.
Combined Scheme lc_set_tm_mutrec from lc_set_tm_rec'.
#[export] Hint Constructors lc_tm : core lngen.
#[export] Hint Constructors lc_set_tm : core lngen.
(* *********************************************************************** *)
(** * Body *)
Definition body_ty_mono_wrt_ty_mono tau1 := forall a1, lc_ty_mono (open_ty_mono_wrt_ty_mono tau1 (ty_mono_var_f a1)).
#[export] Hint Unfold body_ty_mono_wrt_ty_mono : core.
Definition body_ty_rho_wrt_ty_mono rho1 := forall a1, lc_ty_rho (open_ty_rho_wrt_ty_mono rho1 (ty_mono_var_f a1)).
#[export] Hint Unfold body_ty_rho_wrt_ty_mono : core.
Definition body_ty_poly_wrt_ty_mono sig1 := forall a1, lc_ty_poly (open_ty_poly_wrt_ty_mono sig1 (ty_mono_var_f a1)).
#[export] Hint Unfold body_ty_poly_wrt_ty_mono : core.
Definition body_tm_wrt_tm t1 := forall x1, lc_tm (open_tm_wrt_tm t1 (exp_var_f x1)).
Definition body_tm_wrt_ty_mono t1 := forall a1, lc_tm (open_tm_wrt_ty_mono t1 (ty_mono_var_f a1)).
#[export] Hint Unfold body_tm_wrt_tm : core.
#[export] Hint Unfold body_tm_wrt_ty_mono : core.
(* *********************************************************************** *)
(** * Tactic support *)
(** Additional hint declarations. *)
#[export] Hint Resolve plus_le_compat : lngen.
(** Redefine some tactics. *)
Ltac default_case_split ::=
first
[ progress destruct_notin
| progress destruct_sum
| progress safe_f_equal
].
(* *********************************************************************** *)
(** * Theorems about [size] *)
Ltac default_auto ::= auto with arith lngen; tauto.
Ltac default_autorewrite ::= fail.
(* begin hide *)
Lemma size_ty_mono_min_mutual :
(forall tau1, 1 <= size_ty_mono tau1).
Proof. Admitted.
(* end hide *)
Lemma size_ty_mono_min :
forall tau1, 1 <= size_ty_mono tau1.
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_min : lngen.
(* begin hide *)
Lemma size_ty_rho_min_mutual :
(forall rho1, 1 <= size_ty_rho rho1).
Proof. Admitted.
(* end hide *)
Lemma size_ty_rho_min :
forall rho1, 1 <= size_ty_rho rho1.
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_min : lngen.
(* begin hide *)
Lemma size_ty_poly_min_mutual :
(forall sig1, 1 <= size_ty_poly sig1).
Proof. Admitted.
(* end hide *)
Lemma size_ty_poly_min :
forall sig1, 1 <= size_ty_poly sig1.
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_min : lngen.
(* begin hide *)
Lemma size_tm_min_mutual :
(forall t1, 1 <= size_tm t1).
Proof. Admitted.
(* end hide *)
Lemma size_tm_min :
forall t1, 1 <= size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_min : lngen.
(* begin hide *)
Lemma size_ty_mono_close_ty_mono_wrt_ty_mono_rec_mutual :
(forall tau1 a1 n1,
size_ty_mono (close_ty_mono_wrt_ty_mono_rec n1 a1 tau1) = size_ty_mono tau1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_mono_close_ty_mono_wrt_ty_mono_rec :
forall tau1 a1 n1,
size_ty_mono (close_ty_mono_wrt_ty_mono_rec n1 a1 tau1) = size_ty_mono tau1.
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_close_ty_mono_wrt_ty_mono_rec : lngen.
#[export] Hint Rewrite size_ty_mono_close_ty_mono_wrt_ty_mono_rec using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_close_ty_rho_wrt_ty_mono_rec_mutual :
(forall rho1 a1 n1,
size_ty_rho (close_ty_rho_wrt_ty_mono_rec n1 a1 rho1) = size_ty_rho rho1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_close_ty_rho_wrt_ty_mono_rec :
forall rho1 a1 n1,
size_ty_rho (close_ty_rho_wrt_ty_mono_rec n1 a1 rho1) = size_ty_rho rho1.
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_close_ty_rho_wrt_ty_mono_rec : lngen.
#[export] Hint Rewrite size_ty_rho_close_ty_rho_wrt_ty_mono_rec using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_close_ty_poly_wrt_ty_mono_rec_mutual :
(forall sig1 a1 n1,
size_ty_poly (close_ty_poly_wrt_ty_mono_rec n1 a1 sig1) = size_ty_poly sig1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_close_ty_poly_wrt_ty_mono_rec :
forall sig1 a1 n1,
size_ty_poly (close_ty_poly_wrt_ty_mono_rec n1 a1 sig1) = size_ty_poly sig1.
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_close_ty_poly_wrt_ty_mono_rec : lngen.
#[export] Hint Rewrite size_ty_poly_close_ty_poly_wrt_ty_mono_rec using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_close_tm_wrt_tm_rec_mutual :
(forall t1 x1 n1,
size_tm (close_tm_wrt_tm_rec n1 x1 t1) = size_tm t1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_close_tm_wrt_tm_rec :
forall t1 x1 n1,
size_tm (close_tm_wrt_tm_rec n1 x1 t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_close_tm_wrt_tm_rec : lngen.
#[export] Hint Rewrite size_tm_close_tm_wrt_tm_rec using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_close_tm_wrt_ty_mono_rec_mutual :
(forall t1 a1 n1,
size_tm (close_tm_wrt_ty_mono_rec n1 a1 t1) = size_tm t1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_close_tm_wrt_ty_mono_rec :
forall t1 a1 n1,
size_tm (close_tm_wrt_ty_mono_rec n1 a1 t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_close_tm_wrt_ty_mono_rec : lngen.
#[export] Hint Rewrite size_tm_close_tm_wrt_ty_mono_rec using solve [auto] : lngen.
(* end hide *)
Lemma size_ty_mono_close_ty_mono_wrt_ty_mono :
forall tau1 a1,
size_ty_mono (close_ty_mono_wrt_ty_mono a1 tau1) = size_ty_mono tau1.
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_close_ty_mono_wrt_ty_mono : lngen.
#[export] Hint Rewrite size_ty_mono_close_ty_mono_wrt_ty_mono using solve [auto] : lngen.
Lemma size_ty_rho_close_ty_rho_wrt_ty_mono :
forall rho1 a1,
size_ty_rho (close_ty_rho_wrt_ty_mono a1 rho1) = size_ty_rho rho1.
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_close_ty_rho_wrt_ty_mono : lngen.
#[export] Hint Rewrite size_ty_rho_close_ty_rho_wrt_ty_mono using solve [auto] : lngen.
Lemma size_ty_poly_close_ty_poly_wrt_ty_mono :
forall sig1 a1,
size_ty_poly (close_ty_poly_wrt_ty_mono a1 sig1) = size_ty_poly sig1.
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_close_ty_poly_wrt_ty_mono : lngen.
#[export] Hint Rewrite size_ty_poly_close_ty_poly_wrt_ty_mono using solve [auto] : lngen.
Lemma size_tm_close_tm_wrt_tm :
forall t1 x1,
size_tm (close_tm_wrt_tm x1 t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_close_tm_wrt_tm : lngen.
#[export] Hint Rewrite size_tm_close_tm_wrt_tm using solve [auto] : lngen.
Lemma size_tm_close_tm_wrt_ty_mono :
forall t1 a1,
size_tm (close_tm_wrt_ty_mono a1 t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_close_tm_wrt_ty_mono : lngen.
#[export] Hint Rewrite size_tm_close_tm_wrt_ty_mono using solve [auto] : lngen.
(* begin hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono_rec_mutual :
(forall tau1 tau2 n1,
size_ty_mono tau1 <= size_ty_mono (open_ty_mono_wrt_ty_mono_rec n1 tau2 tau1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono_rec :
forall tau1 tau2 n1,
size_ty_mono tau1 <= size_ty_mono (open_ty_mono_wrt_ty_mono_rec n1 tau2 tau1).
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_open_ty_mono_wrt_ty_mono_rec : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono_rec_mutual :
(forall rho1 tau1 n1,
size_ty_rho rho1 <= size_ty_rho (open_ty_rho_wrt_ty_mono_rec n1 tau1 rho1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono_rec :
forall rho1 tau1 n1,
size_ty_rho rho1 <= size_ty_rho (open_ty_rho_wrt_ty_mono_rec n1 tau1 rho1).
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_open_ty_rho_wrt_ty_mono_rec : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono_rec_mutual :
(forall sig1 tau1 n1,
size_ty_poly sig1 <= size_ty_poly (open_ty_poly_wrt_ty_mono_rec n1 tau1 sig1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono_rec :
forall sig1 tau1 n1,
size_ty_poly sig1 <= size_ty_poly (open_ty_poly_wrt_ty_mono_rec n1 tau1 sig1).
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_open_ty_poly_wrt_ty_mono_rec : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_tm_rec_mutual :
(forall t1 t2 n1,
size_tm t1 <= size_tm (open_tm_wrt_tm_rec n1 t2 t1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_tm_rec :
forall t1 t2 n1,
size_tm t1 <= size_tm (open_tm_wrt_tm_rec n1 t2 t1).
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_tm_rec : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_ty_mono_rec_mutual :
(forall t1 tau1 n1,
size_tm t1 <= size_tm (open_tm_wrt_ty_mono_rec n1 tau1 t1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_ty_mono_rec :
forall t1 tau1 n1,
size_tm t1 <= size_tm (open_tm_wrt_ty_mono_rec n1 tau1 t1).
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_ty_mono_rec : lngen.
(* end hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono :
forall tau1 tau2,
size_ty_mono tau1 <= size_ty_mono (open_ty_mono_wrt_ty_mono tau1 tau2).
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_open_ty_mono_wrt_ty_mono : lngen.
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono :
forall rho1 tau1,
size_ty_rho rho1 <= size_ty_rho (open_ty_rho_wrt_ty_mono rho1 tau1).
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_open_ty_rho_wrt_ty_mono : lngen.
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono :
forall sig1 tau1,
size_ty_poly sig1 <= size_ty_poly (open_ty_poly_wrt_ty_mono sig1 tau1).
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_open_ty_poly_wrt_ty_mono : lngen.
Lemma size_tm_open_tm_wrt_tm :
forall t1 t2,
size_tm t1 <= size_tm (open_tm_wrt_tm t1 t2).
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_tm : lngen.
Lemma size_tm_open_tm_wrt_ty_mono :
forall t1 tau1,
size_tm t1 <= size_tm (open_tm_wrt_ty_mono t1 tau1).
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_ty_mono : lngen.
(* begin hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono_rec_var_mutual :
(forall tau1 a1 n1,
size_ty_mono (open_ty_mono_wrt_ty_mono_rec n1 (ty_mono_var_f a1) tau1) = size_ty_mono tau1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono_rec_var :
forall tau1 a1 n1,
size_ty_mono (open_ty_mono_wrt_ty_mono_rec n1 (ty_mono_var_f a1) tau1) = size_ty_mono tau1.
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_open_ty_mono_wrt_ty_mono_rec_var : lngen.
#[export] Hint Rewrite size_ty_mono_open_ty_mono_wrt_ty_mono_rec_var using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono_rec_var_mutual :
(forall rho1 a1 n1,
size_ty_rho (open_ty_rho_wrt_ty_mono_rec n1 (ty_mono_var_f a1) rho1) = size_ty_rho rho1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono_rec_var :
forall rho1 a1 n1,
size_ty_rho (open_ty_rho_wrt_ty_mono_rec n1 (ty_mono_var_f a1) rho1) = size_ty_rho rho1.
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_open_ty_rho_wrt_ty_mono_rec_var : lngen.
#[export] Hint Rewrite size_ty_rho_open_ty_rho_wrt_ty_mono_rec_var using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono_rec_var_mutual :
(forall sig1 a1 n1,
size_ty_poly (open_ty_poly_wrt_ty_mono_rec n1 (ty_mono_var_f a1) sig1) = size_ty_poly sig1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono_rec_var :
forall sig1 a1 n1,
size_ty_poly (open_ty_poly_wrt_ty_mono_rec n1 (ty_mono_var_f a1) sig1) = size_ty_poly sig1.
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_open_ty_poly_wrt_ty_mono_rec_var : lngen.
#[export] Hint Rewrite size_ty_poly_open_ty_poly_wrt_ty_mono_rec_var using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_tm_rec_var_mutual :
(forall t1 x1 n1,
size_tm (open_tm_wrt_tm_rec n1 (exp_var_f x1) t1) = size_tm t1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_tm_rec_var :
forall t1 x1 n1,
size_tm (open_tm_wrt_tm_rec n1 (exp_var_f x1) t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_tm_rec_var : lngen.
#[export] Hint Rewrite size_tm_open_tm_wrt_tm_rec_var using solve [auto] : lngen.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_ty_mono_rec_var_mutual :
(forall t1 a1 n1,
size_tm (open_tm_wrt_ty_mono_rec n1 (ty_mono_var_f a1) t1) = size_tm t1).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma size_tm_open_tm_wrt_ty_mono_rec_var :
forall t1 a1 n1,
size_tm (open_tm_wrt_ty_mono_rec n1 (ty_mono_var_f a1) t1) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_ty_mono_rec_var : lngen.
#[export] Hint Rewrite size_tm_open_tm_wrt_ty_mono_rec_var using solve [auto] : lngen.
(* end hide *)
Lemma size_ty_mono_open_ty_mono_wrt_ty_mono_var :
forall tau1 a1,
size_ty_mono (open_ty_mono_wrt_ty_mono tau1 (ty_mono_var_f a1)) = size_ty_mono tau1.
Proof. Admitted.
#[export] Hint Resolve size_ty_mono_open_ty_mono_wrt_ty_mono_var : lngen.
#[export] Hint Rewrite size_ty_mono_open_ty_mono_wrt_ty_mono_var using solve [auto] : lngen.
Lemma size_ty_rho_open_ty_rho_wrt_ty_mono_var :
forall rho1 a1,
size_ty_rho (open_ty_rho_wrt_ty_mono rho1 (ty_mono_var_f a1)) = size_ty_rho rho1.
Proof. Admitted.
#[export] Hint Resolve size_ty_rho_open_ty_rho_wrt_ty_mono_var : lngen.
#[export] Hint Rewrite size_ty_rho_open_ty_rho_wrt_ty_mono_var using solve [auto] : lngen.
Lemma size_ty_poly_open_ty_poly_wrt_ty_mono_var :
forall sig1 a1,
size_ty_poly (open_ty_poly_wrt_ty_mono sig1 (ty_mono_var_f a1)) = size_ty_poly sig1.
Proof. Admitted.
#[export] Hint Resolve size_ty_poly_open_ty_poly_wrt_ty_mono_var : lngen.
#[export] Hint Rewrite size_ty_poly_open_ty_poly_wrt_ty_mono_var using solve [auto] : lngen.
Lemma size_tm_open_tm_wrt_tm_var :
forall t1 x1,
size_tm (open_tm_wrt_tm t1 (exp_var_f x1)) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_tm_var : lngen.
#[export] Hint Rewrite size_tm_open_tm_wrt_tm_var using solve [auto] : lngen.
Lemma size_tm_open_tm_wrt_ty_mono_var :
forall t1 a1,
size_tm (open_tm_wrt_ty_mono t1 (ty_mono_var_f a1)) = size_tm t1.
Proof. Admitted.
#[export] Hint Resolve size_tm_open_tm_wrt_ty_mono_var : lngen.
#[export] Hint Rewrite size_tm_open_tm_wrt_ty_mono_var using solve [auto] : lngen.
(* *********************************************************************** *)
(** * Theorems about [degree] *)
Ltac default_auto ::= auto with lngen; tauto.
Ltac default_autorewrite ::= fail.
(* begin hide *)
Lemma degree_ty_mono_wrt_ty_mono_S_mutual :
(forall n1 tau1,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_mono_wrt_ty_mono (S n1) tau1).
Proof. Admitted.
(* end hide *)
Lemma degree_ty_mono_wrt_ty_mono_S :
forall n1 tau1,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_mono_wrt_ty_mono (S n1) tau1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_mono_wrt_ty_mono_S : lngen.
(* begin hide *)
Lemma degree_ty_rho_wrt_ty_mono_S_mutual :
(forall n1 rho1,
degree_ty_rho_wrt_ty_mono n1 rho1 ->
degree_ty_rho_wrt_ty_mono (S n1) rho1).
Proof. Admitted.
(* end hide *)
Lemma degree_ty_rho_wrt_ty_mono_S :
forall n1 rho1,
degree_ty_rho_wrt_ty_mono n1 rho1 ->
degree_ty_rho_wrt_ty_mono (S n1) rho1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_rho_wrt_ty_mono_S : lngen.
(* begin hide *)
Lemma degree_ty_poly_wrt_ty_mono_S_mutual :
(forall n1 sig1,
degree_ty_poly_wrt_ty_mono n1 sig1 ->
degree_ty_poly_wrt_ty_mono (S n1) sig1).
Proof. Admitted.
(* end hide *)
Lemma degree_ty_poly_wrt_ty_mono_S :
forall n1 sig1,
degree_ty_poly_wrt_ty_mono n1 sig1 ->
degree_ty_poly_wrt_ty_mono (S n1) sig1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_poly_wrt_ty_mono_S : lngen.
(* begin hide *)
Lemma degree_tm_wrt_tm_S_mutual :
(forall n1 t1,
degree_tm_wrt_tm n1 t1 ->
degree_tm_wrt_tm (S n1) t1).
Proof. Admitted.
(* end hide *)
Lemma degree_tm_wrt_tm_S :
forall n1 t1,
degree_tm_wrt_tm n1 t1 ->
degree_tm_wrt_tm (S n1) t1.
Proof. Admitted.
#[export] Hint Resolve degree_tm_wrt_tm_S : lngen.
(* begin hide *)
Lemma degree_tm_wrt_ty_mono_S_mutual :
(forall n1 t1,
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono (S n1) t1).
Proof. Admitted.
(* end hide *)
Lemma degree_tm_wrt_ty_mono_S :
forall n1 t1,
degree_tm_wrt_ty_mono n1 t1 ->
degree_tm_wrt_ty_mono (S n1) t1.
Proof. Admitted.
#[export] Hint Resolve degree_tm_wrt_ty_mono_S : lngen.
Lemma degree_ty_mono_wrt_ty_mono_O :
forall n1 tau1,
degree_ty_mono_wrt_ty_mono O tau1 ->
degree_ty_mono_wrt_ty_mono n1 tau1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_mono_wrt_ty_mono_O : lngen.
Lemma degree_ty_rho_wrt_ty_mono_O :
forall n1 rho1,
degree_ty_rho_wrt_ty_mono O rho1 ->
degree_ty_rho_wrt_ty_mono n1 rho1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_rho_wrt_ty_mono_O : lngen.
Lemma degree_ty_poly_wrt_ty_mono_O :
forall n1 sig1,
degree_ty_poly_wrt_ty_mono O sig1 ->
degree_ty_poly_wrt_ty_mono n1 sig1.
Proof. Admitted.
#[export] Hint Resolve degree_ty_poly_wrt_ty_mono_O : lngen.
Lemma degree_tm_wrt_tm_O :
forall n1 t1,
degree_tm_wrt_tm O t1 ->
degree_tm_wrt_tm n1 t1.
Proof. Admitted.
#[export] Hint Resolve degree_tm_wrt_tm_O : lngen.
Lemma degree_tm_wrt_ty_mono_O :
forall n1 t1,
degree_tm_wrt_ty_mono O t1 ->
degree_tm_wrt_ty_mono n1 t1.
Proof. Admitted.
#[export] Hint Resolve degree_tm_wrt_ty_mono_O : lngen.
(* begin hide *)
Lemma degree_ty_mono_wrt_ty_mono_close_ty_mono_wrt_ty_mono_rec_mutual :
(forall tau1 a1 n1,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_mono_wrt_ty_mono (S n1) (close_ty_mono_wrt_ty_mono_rec n1 a1 tau1)).
Proof. Admitted.
(* end hide *)
(* begin hide *)
Lemma degree_ty_mono_wrt_ty_mono_close_ty_mono_wrt_ty_mono_rec :
forall tau1 a1 n1,
degree_ty_mono_wrt_ty_mono n1 tau1 ->
degree_ty_mono_wrt_ty_mono (S n1) (close_ty_mono_wrt_ty_mono_rec n1 a1 tau1).
Proof. Admitted.