-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy patheval_cfp.py
147 lines (126 loc) · 6 KB
/
eval_cfp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
# encoding: utf-8
'''
@author: wujiyang
@contact: [email protected]
@file: eval_cfp.py
@time: 2018/12/26 16:23
@desc: this code is very similar with eval_lfw.py and eval_agedb30.py
'''
import numpy as np
import scipy.io
import os
import torch.utils.data
from backbone import mobilefacenet, resnet, arcfacenet, cbam
from dataset.cfp import CFP_FP
import torchvision.transforms as transforms
from torch.nn import DataParallel
import argparse
def getAccuracy(scores, flags, threshold):
p = np.sum(scores[flags == 1] > threshold)
n = np.sum(scores[flags == -1] < threshold)
return 1.0 * (p + n) / len(scores)
def getThreshold(scores, flags, thrNum):
accuracys = np.zeros((2 * thrNum + 1, 1))
thresholds = np.arange(-thrNum, thrNum + 1) * 1.0 / thrNum
for i in range(2 * thrNum + 1):
accuracys[i] = getAccuracy(scores, flags, thresholds[i])
max_index = np.squeeze(accuracys == np.max(accuracys))
bestThreshold = np.mean(thresholds[max_index])
return bestThreshold
def evaluation_10_fold(feature_path='./result/cur_epoch_cfp_result.mat'):
ACCs = np.zeros(10)
result = scipy.io.loadmat(feature_path)
for i in range(10):
fold = result['fold']
flags = result['flag']
featureLs = result['fl']
featureRs = result['fr']
valFold = fold != i
testFold = fold == i
flags = np.squeeze(flags)
mu = np.mean(np.concatenate((featureLs[valFold[0], :], featureRs[valFold[0], :]), 0), 0)
mu = np.expand_dims(mu, 0)
featureLs = featureLs - mu
featureRs = featureRs - mu
featureLs = featureLs / np.expand_dims(np.sqrt(np.sum(np.power(featureLs, 2), 1)), 1)
featureRs = featureRs / np.expand_dims(np.sqrt(np.sum(np.power(featureRs, 2), 1)), 1)
scores = np.sum(np.multiply(featureLs, featureRs), 1)
threshold = getThreshold(scores[valFold[0]], flags[valFold[0]], 10000)
ACCs[i] = getAccuracy(scores[testFold[0]], flags[testFold[0]], threshold)
return ACCs
def loadModel(data_root, file_list, backbone_net, gpus='0', resume=None):
if backbone_net == 'MobileFace':
net = mobilefacenet.MobileFaceNet()
elif backbone_net == 'CBAM_50':
net = cbam.CBAMResNet(50, feature_dim=args.feature_dim, mode='ir')
elif backbone_net == 'CBAM_50_SE':
net = cbam.CBAMResNet(50, feature_dim=args.feature_dim, mode='ir_se')
elif backbone_net == 'CBAM_100':
net = cbam.CBAMResNet(100, feature_dim=args.feature_dim, mode='ir')
elif backbone_net == 'CBAM_100_SE':
net = cbam.CBAMResNet(100, feature_dim=args.feature_dim, mode='ir_se')
else:
print(backbone_net, ' is not available!')
# gpu init
multi_gpus = False
if len(gpus.split(',')) > 1:
multi_gpus = True
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net.load_state_dict(torch.load(resume)['net_state_dict'])
if multi_gpus:
net = DataParallel(net).to(device)
else:
net = net.to(device)
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
cfp_dataset = CFP_FP(data_root, file_list, transform=transform)
cfp_loader = torch.utils.data.DataLoader(cfp_dataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
return net.eval(), device, cfp_dataset, cfp_loader
def getFeatureFromTorch(feature_save_dir, net, device, data_set, data_loader):
featureLs = None
featureRs = None
count = 0
for data in data_loader:
for i in range(len(data)):
data[i] = data[i].to(device)
count += data[0].size(0)
#print('extracing deep features from the face pair {}...'.format(count))
with torch.no_grad():
res = [net(d).data.cpu().numpy() for d in data]
featureL = np.concatenate((res[0], res[1]), 1)
featureR = np.concatenate((res[2], res[3]), 1)
# print(featureL.shape, featureR.shape)
if featureLs is None:
featureLs = featureL
else:
featureLs = np.concatenate((featureLs, featureL), 0)
if featureRs is None:
featureRs = featureR
else:
featureRs = np.concatenate((featureRs, featureR), 0)
# print(featureLs.shape, featureRs.shape)
result = {'fl': featureLs, 'fr': featureRs, 'fold': data_set.folds, 'flag': data_set.flags}
scipy.io.savemat(feature_save_dir, result)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument('--root', type=str, default='/media/sda/CFP-FP/cfp_fp_aligned_112', help='The path of lfw data')
parser.add_argument('--file_list', type=str, default='/media/sda/CFP-FP/cfp_fp_pair.txt', help='The path of lfw data')
parser.add_argument('--resume', type=str, default='./model/SERES100_SERES100_IR_20190528_132635/Iter_342000_net.ckpt', help='The path pf save model')
parser.add_argument('--backbone_net', type=str, default='CBAM_100_SE', help='MobileFace, CBAM_50, CBAM_50_SE, CBAM_100, CBAM_100_SE')
parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension')
parser.add_argument('--feature_save_path', type=str, default='./result/cur_epoch_cfp_result.mat',
help='The path of the extract features save, must be .mat file')
parser.add_argument('--gpus', type=str, default='2,3', help='gpu list')
args = parser.parse_args()
net, device, agedb_dataset, agedb_loader = loadModel(args.root, args.file_list, args.backbone_net, args.gpus, args.resume)
getFeatureFromTorch(args.feature_save_path, net, device, agedb_dataset, agedb_loader)
ACCs = evaluation_10_fold(args.feature_save_path)
for i in range(len(ACCs)):
print('{} {:.2f}'.format(i + 1, ACCs[i] * 100))
print('--------')
print('AVE {:.4f}'.format(np.mean(ACCs) * 100))