forked from NWTlter/NWT_CLM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_obs_NPP-MAP.R
974 lines (845 loc) · 42.7 KB
/
plot_obs_NPP-MAP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
##############################################################################################
#' title read in NWT data
#' author
#' Hannah Holland-Moritz (hhollandmoritz AT gmail.com)
#' Will Wieder (wwieder AT ucar.edu)
#' description
#' Workflow for plotting data from Niwot Ridge LTER.
#' Warning, this code is prety hacked... but it eventually makes some plots showing
#' annual NPP, with precip from Saddle. More work needed to do a good job looking at snow depth
##############################################################################
##############################################################################
# Dependencies
##############################################################################
rm(list = ls())
#Call the R HDF5 Library
packReq <- c("magrittr","EML", "dplyr", "ggplot2",
"purrr", "tidyr", "lubridate","RCurl")
#Install and load all required packages
lapply(packReq, function(x) {
print(x)
if (require(x, character.only = TRUE) == FALSE) {
install.packages(x)
library(x, character.only = TRUE)
}})
#Setup Environment
options(stringsAsFactors = F)
##############################################################################
#Workflow parameters
##############################################################################
#### Output Options ####
# 1) Base directory for output
# 2) Directory to download observation data to
# 3) Location of the tvan data that was used to create forcing files
# location of tvan data with soil information; Note: Tvan soil temperature data
# probes from East tower do not work, so please give west tower tvan data location
# I'm trying to make it so we don't have to keep changing this...
user = 'wwieder'
if (user == 'wwieder') {
DirOutBase <- paste0("~/Desktop/Working_files/Niwot/CLM/OBS/data")
DirDnld = "~/Desktop/Working_files/Niwot/CLM/OBS/NWT_lter_obs_downloads"
tvan_data_fp <- "~/Desktop/Working_files/Niwot/CLM/datav20200824T1008/data/tvan_forcing_data_precip_mods_both_towers_2007-05-11_2020-08-11.txt"
tvan_data_soil <- "~/Desktop/Working_files/Niwot/Tvan_out_new/filtered_data/tvan_West_2007-05-09_19-00-00_to_2020-08-11_00-30-00_flux_P.csv"
} else {
DirOutBase <- paste0("~/Downloads/OBS/data")
DirDnld = "~/Downloads/CLM/OBS/NWT_lter_obs_downloads"
tvan_data_fp <- "~/Downloads/CLM/datav20200816T1808/data/tvan_forcing_data_precip_mods_both_towers_2007-05-11_2020-08-11.txt"
tvan_data_soil <- "~/Downloads/Tvan_out_new/filtered_data/tvan_West_2007-05-09_19-00-00_to_2020-08-11_07-30-00_flux_P.csv"
}
# Should a newer version of EDI data be downloaded if one is available?
getNewData = TRUE
##############################################################################
# Static workflow parameters - these are unlikely to change
##############################################################################
#Check if directory exists and create if not
if(!dir.exists(DirOutBase)) dir.create(DirOutBase, recursive = TRUE)
if(!dir.exists(DirDnld)) dir.create(DirDnld, recursive = TRUE)
# the NWT LTER EDI id for observational data from the saddle
saddle_catch_sensntwk <- "210" # Saddle catchment sensor network data, 2017- ongoing.
saddle_snow_depth_data <- "31" # Snow depth data for Saddle grid, 1992 - ongoing
saddle_productivity_data <- "16" # Aboveground net primary productivity data for Saddle (contains veg community classification for grid points) grid, 1992 - ongoing
saddle_sensntwk_veg <- "191" # Plot vegetation surveys at the Sensor Network, 2017 to ongoing
# Other possibly useful datasets:
# 211: Above-ground biomass for Sensor Node Array from 2017 to 2018, yearly
# Has plots corresponding to sensor soil moisture node, also describes plot
# biomass.
# 16: Aboveground net primary productivity for saddle grid
# not in edi yet: tvan soil temp/moisture from West tower.
##############################################################################
# Helper functions - for downloading and loading data
##############################################################################
# Functions for downloading saddle meterological data from EDI:
# These functions are from Sarah Elmendorf's utility_functions_all.R script
# https://github.com/NWTlter/long-term-trends/blob/master/utility_functions/utility_functions_all.R
# function to determine current version of data package on EDI
getCurrentVersion <- function(edi_id){
# This function checks an EDI id to determine the most recent available
# version. It returns the id of the most recent version.
library(magrittr)
versions = readLines(paste0('https://pasta.lternet.edu/package/eml/knb-lter-nwt/', edi_id),
warn = FALSE) %>%
as.numeric() %>% (max)
packageid=paste0('knb-lter-nwt.', edi_id, '.', versions)
return (packageid)
}
#function to download the EML file from EDI
getEML <- function(packageid){
require(magrittr)
myurl<-paste0("https://portal.edirepository.org/nis/metadataviewer?packageid=",
packageid,
"&contentType=application/xml")
myeml<-xml2::read_xml(paste0("https://portal.edirepository.org/nis/metadataviewer?packageid=",
packageid,
"&contentType=application/xml"))%>%EML::read_eml()
}
# Function for downloading from EDI
download_EDI <- function(edi_id, dest_dir, getNewData = TRUE) {
# This section heavily borrowed from Sarah Elmendorf's generic_timeseries_workflow.R script
# https://github.com/NWTlter/long-term-trends/blob/master/plotting_scripts/generic_timeseries_workflow.R
# Depends on getCurrentVersion() and getEML()
packageid = getCurrentVersion(edi_id)
if (any(grepl(packageid, list.files(dest_dir)) == TRUE)) {
writeLines(paste0("Most recent package version ", packageid, " is already downloaded."))
return(list.files(dest_dir, pattern = paste0(packageid, ".{1,}csv"), full.names = T))
} else if (getNewData == FALSE) {
writeLines(paste0("A more recent version of the data (version ", packageid, ") is available.",
" But since you have specified getNewData = FALSE, the latest version will not be downloaded."))
return(list.files(dest_dir, pattern = paste0(".{1,}csv"), full.names = T))
} else {
writeLines(paste0("Downloading package ", packageid, " from EDI."))
myeml=getEML(packageid)
# Create output directory for data
ifelse(!dir.exists(file.path(dest_dir)),
dir.create(file.path(dest_dir)), FALSE)
### eml reading and downloading of csv
if (is.null(names(myeml$dataset$dataTable))){
attributeList=lapply(myeml$dataset$dataTable, function(x){
EML::get_attributes(x$attributeList)
})
names(attributeList)=lapply(myeml$dataset$dataTable, function(x){
x$physical$objectName})
if(getNewData){
#download all the datatables in the package
csv_list <- list()
csv_list <- lapply(myeml$dataset$dataTable, function(x){
url_to_get=x$physical$distribution$online$url$url
download.file(url_to_get,
destfile=paste0(dest_dir, "/",
packageid, "_",
x$physical$objectName),
method = "curl")
output_csv_file <- paste0(dest_dir, "/",
packageid, "_",
x$physical$objectName)
})
}
}else{
#if only one data table
attributeList=list(EML::get_attributes(myeml$dataset$dataTable$attributeList))
names(attributeList)=myeml$dataset$dataTable$physical$objectName
if(getNewData){
url_to_get=myeml$dataset$dataTable$physical$distribution$online$url$url
download.file(url_to_get,
destfile=paste0(dest_dir, "/",
packageid, "_",
myeml$dataset$dataTable$physical$objectName),
method = "curl")
output_csv_file <- paste0(dest_dir, "/",
packageid, "_",
myeml$dataset$dataTable$physical$objectName)
}
}
# Also save the full xml
write_eml(myeml, file = paste0(dest_dir, "/", packageid, ".xml"))
writeLines(paste0("Downloaded data can be found in: ", dest_dir))
return(output_csv_file)
}
}
################################################################################
# Download Data
################################################################################
# Saddle sensor network
message(paste0("Downloading Saddle Catchment sensor network data, please cite: \n",
"Morse, J. and Niwot Ridge LTER. 2020. Saddle catchment sensor network data, 2017- ongoing. ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/9415ac5a669c11c6501612a94f90e04a (Accessed ",Sys.Date(), ")"))
saddle_catch_sensntwk_data_fp <- download_EDI(edi_id = saddle_catch_sensntwk,
dest_dir = paste0(DirDnld,
"/saddle_sensorntwk_data"),
getNewData = getNewData)
# Download sensor network community
# Download saddle grid snow_depth_data
message(paste0("Downloading Saddle Snow Depth data, please cite: \n",
"Walker, S., J. Morse, and Niwot Ridge LTER. 2020. Snow depth data for Saddle grid, 1992 - ongoing ver 17. Environmental Data Initiative. https://doi.org/10.6073/pasta/8186d641539c37787495804b817e55ed (Accessed ",Sys.Date(), ")"))
saddle_snwdpt_data_fp <- download_EDI(edi_id = saddle_snow_depth_data,
dest_dir = paste0(DirDnld, "/saddle_snow_depth_data"),
getNewData = getNewData)
# Download saddle grid productivity
message(paste0("Downloading Saddle Productivity data, please cite: \n",
"Walker, M., J. Smith, H. Humphries, and Niwot Ridge LTER. 2019. Aboveground net primary productivity data for Saddle grid, 1992 - ongoing. ver 4. Environmental Data Initiative. https://doi.org/10.6073/pasta/34b6a7bbe47f9398ff7f5a748f90e838 (Accessed ",Sys.Date(), ")"))
saddle_prod_data_fp <- download_EDI(edi_id = saddle_productivity_data,
dest_dir = paste0(DirDnld,"/saddle_productivity_data"),
getNewData = getNewData)
# Download saddle sensor network veg community
message(paste0("Downloading Saddle Productivity data, please cite: \n",
"Elwood, K., W. Reed, and Niwot Ridge LTER. 2020. Plot vegetation surveys at the Sensor Network, 2017 to ongoing ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/1b5e99d522f986c2244bf5a25e69d3f5 (Accessed ",Sys.Date(), ")"))
saddle_sensntwk_veg_data_fp <- download_EDI(edi_id = saddle_sensntwk_veg,
dest_dir = paste0(DirDnld,
"/saddle_sensntwk_veg_data"),
getNewData = getNewData)
################################################################################
# Load Tvan flux data
################################################################################
# Both
tvan_comb <- read.table(file = tvan_data_fp, sep = "\t",
skip = 2, header = FALSE)
tvan_comb_names <- read.table(file = tvan_data_fp, sep = "\t",
header = TRUE, nrows = 1)
tvan_comb_units <- as.character(unname(unlist(tvan_comb_names[1,])))
colnames(tvan_comb) <- names(tvan_comb_names)
plot(tvan_comb$Tsoil)
# convert flux GPP (umol/m2/s to g/m2/s, as in CLM)
tvan_comb$GPP = tvan_comb$GPP * 1e-6 * 12.01
tvan_comb_units[1] = 'gC m-2 s-1'
################################################################################
# Clean and format Tvan Flux data
################################################################################
tvan_comb_mod <- tvan_comb %>%
mutate_all(list(~na_if(., -9999))) %>%
mutate(timestamp = DateTime,
Hour = lubridate::hour(timestamp) +
lubridate::minute(timestamp)/60,
date = lubridate::date(timestamp)) %>%
mutate(DoY = yday(date),
Year = year(date),
month = month(date)) %>%
mutate(MonGroup = ifelse(month %in% c(12,1,2), "DJF",
ifelse(month %in% c(3,4,5), "MAM",
ifelse(month %in% c(6,7,8), "JJA", "SON")))) %>%
#group_by(Year, DoY) %>%
#mutate_at(all_of(c("NEE", "LE", "H", "Ustar", "Tair", "VPD", "rH", "VPD", "U",
# "PRECTmms", "P", "FLDS", "Rg", "radNet", "Tsoil", "GPP")),
# list(daily_mean = mean), na.rm = TRUE) %>%
select(date, timestamp, Year, DoY, Hour, everything())
# Get diurnal fluxes
# set the variables to use for diurnal fluxes
diurnal_flx_vars <- c("radNet", "H", "LE", "GPP")
tvan_comb_mod.diurnal_seasonal <- tvan_comb_mod %>%
select(-timestamp, -date) %>%
select(Hour, DoY, Year, MonGroup, all_of(diurnal_flx_vars)) %>%
group_by(MonGroup, Hour) %>%
summarize_at(all_of(diurnal_flx_vars),
list(houravg = mean, hoursd = sd), na.rm = TRUE) %>%
mutate(ObsSim = "Obs") %>%
mutate(veg_com = "FF")
# Get DoY fluxes
DoY_flx_vars <- c("GPP", "LE",'Tsoil')
tvan_comb_mod.daily <- tvan_comb_mod %>%
select(Hour, DoY, month, Year, all_of(DoY_flx_vars)) %>%
# remove leap days and fix DoY
filter(!(leap_year(Year) & DoY == 60)) %>%
mutate(DoY = if_else(leap_year(Year) & (DoY > 59),
DoY - 1, DoY)) %>%
group_by(DoY) %>%
summarize_at(all_of(DoY_flx_vars),
list(dailyavg = mean, dailysd = sd), na.rm = TRUE) %>%
select(!starts_with("LE")) %>%
mutate(ObsSim = "Obs") %>%
mutate(veg_com = "FF")
plot(tvan_comb_mod.daily$Tsoil_dailyavg,type='l')
# Get July data
jul_30_min_tvan <- tvan_comb_mod %>%
select(-timestamp, -date) %>%
select(Hour, DoY, Year, month, all_of(diurnal_flx_vars)) %>%
filter(month == 7) %>%
group_by(Hour) %>%
summarize_at(all_of(diurnal_flx_vars),
list(houravg = mean, hoursd = sd), na.rm = TRUE) %>%
mutate(ObsSim = "Obs") %>%
mutate(veg_com = "FF")
################################################################################
# Load in data from Saddle Grid (snow depth and productivity)
################################################################################
writeLines("Reading in saddle grid snow depth data...")
# Daily data
sad_snw <- read.csv(saddle_snwdpt_data_fp,
header = T, sep = ",", quot = '"')
writeLines("Reading in saddle productivity data...")
sad_prod <- read.csv(saddle_prod_data_fp,
header = T, sep = ",", quot = '"')
################################################################################
# Handle Saddle Grid Snow-depth data
################################################################################
# Get saddle grid point vegetation community characterizations
sad_grid_veg_com <- sad_prod %>%
select(grid_pt, veg_class) %>%
rename(veg_com = veg_class) %>%
unique()
# Merge saddle snow depth measurements with the saddle vegetation characterizations
# Snow measured in cm at stake and m in the model (SNOW_DEPTH)
sad_snw_mod <- sad_snw %>%
left_join(sad_grid_veg_com, by = c("point_ID" = "grid_pt")) %>%
#select(point_ID, veg_class) %>%
mutate(veg_class = ifelse(is.na(veg_com), "not available", veg_com)) %>%
filter(!(veg_com == "not available")) %>%
filter(veg_com %in% c("DM", "FF", "MM", "SB", "WM")) %>%
mutate(snow_depth = mean_depth,
date = as.Date(date, format = "%Y-%m-%d"),
DoY = lubridate::yday(date),
Year = lubridate::year(date)) %>%
group_by(veg_com, DoY) %>%
mutate(snow_depth_dailyavg = mean(snow_depth, na.rm = TRUE),
snow_depth_dailysd = sd(snow_depth, na.rm = TRUE)) %>%
select(date, DoY, Year, point_ID, snow_depth, snow_depth_dailyavg,
snow_depth_dailysd, veg_com) %>%
ungroup() %>%
mutate(data_information = "Saddle_grid_snow_depth_EDI_31")
# Get DoY averages
sad_snw_daily <- sad_snw_mod %>%
select(DoY, snow_depth_dailyavg, snow_depth_dailysd,
veg_com, data_information) %>%
unique() %>%
rename(snow_depth_data_information = data_information)
# Average the snow depth across plots of the same vegetation community, at
# each date
sad_snw_forc_yrs <- sad_snw_mod %>%
filter(Year >= 2007) %>%
group_by(date, veg_com) %>%
mutate(avg_date_depth = mean(snow_depth, na.rm = TRUE),
sd_date_depth = sd(snow_depth, na.rm = TRUE)) %>%
ungroup() %>%
select(date, DoY, Year, avg_date_depth, sd_date_depth, veg_com,
data_information) %>%
unique()
# plot the measurements and doy averages for each community
sad_snw_mod %>%
filter(snow_depth > 0) %>%
ggplot(aes(x = as.Date("2000-01-01", format = "%Y-%m-%d") +
(DoY - 1))) +
geom_point(aes(y = snow_depth), alpha = 0.03) +
#geom_line(data = sad_snw_mod %>%
# select(DoY, doy_avg_depth, veg_com) %>%
# unique(),
# aes(y = doy_avg_depth), color = "red") +
# geom_ribbon(aes(ymin = doy_avg_depth - doy_sd_depth,
# ymax = doy_avg_depth + doy_sd_depth),
# alpha = 0.3) +
facet_wrap(~veg_com) +
scale_x_date(date_labels = "%b", date_breaks = "1 month")
#
sad_snw_mod %>%
#filter(Year >= 2007) %>%
group_by(date, veg_com) %>%
mutate(avg_date_depth = mean(snow_depth, na.rm = TRUE),
sd_date_depth = sd(snow_depth, na.rm = TRUE)) %>%
ungroup() %>%
ggplot(aes(x = date)) +
geom_ribbon(aes(ymin = avg_date_depth - sd_date_depth,
ymax = avg_date_depth + sd_date_depth),
alpha = 0.5) +
geom_line(aes(y = avg_date_depth)) +
facet_wrap(~veg_com, ncol = 1) +
scale_x_date(date_labels = "%b-%Y", date_breaks = "1 year") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
# plot DoY vs depth with lines for each year
sad_snw_mod %>%
#filter(Year >= 2007) %>%
group_by(date, veg_com) %>%
mutate(avg_date_depth = mean(snow_depth, na.rm = TRUE),
sd_date_depth = sd(snow_depth, na.rm = TRUE)) %>%
ungroup() %>%
ggplot(aes(x = yday(date)) +
geom_ribbon(ymin = avg_date_depth - sd_date_depth,
ymax = avg_date_depth + sd_date_depth),
group=factor(year(date)), colour=factor(year(date)),
alpha = 0.5) +
geom_line(aes(y = avg_date_depth,
group=factor(year(date)),
colour=factor(year(date)) )) +
facet_wrap(~veg_com, ncol = 1) +
scale_x_date(date_labels = "%j") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
################################################################################
# Handle Saddle Grid Productivity data
################################################################################
# Yearly Saddle grid Productivity data (gC/m^2)
# CLM needs it in gC/m^2/s
sad_prod_mod <- sad_prod %>%
rename(veg_com = veg_class) %>%
select(year, grid_pt, veg_com, NPP, subsample) %>%
#mutate(row = row_number()) %>%
# Separate by subsamples
pivot_wider(names_from = matches("subsample"),
names_prefix = "subsample_",
values_from = matches("NPP")) %>%
# average subsamples
mutate(NPP = rowMeans(select(., starts_with("subsample_")),
na.rm = TRUE))
sad_prod_mod_ann <- sad_prod_mod %>%
group_by(year, veg_com) %>%
mutate(mean_NPP = mean(NPP, na.rm = TRUE),
sd_NPP = sd(NPP, na.rm = TRUE))
sad_prod_mod %>%
ggplot(aes(x = veg_com, y = NPP)) +
geom_boxplot(fill = NA) +
geom_point(position = position_jitter(width = rel(0.3)))
# remove ST and SF communities
sad_prod_mod %>%
#filter(NPP<700) %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
group_by(year, veg_com) %>%
mutate(avg_year_NPP = mean(NPP, na.rm = TRUE),
sd_year_NPP = sd(NPP, na.rm = TRUE)) %>%
ungroup() %>%
ggplot(aes(x = year, y = avg_year_NPP,
group=factor(veg_com),
colour=factor(veg_com))) +
geom_point()#+
#geom_errorbar(aes(ymin=avg_year_NPP-sd_year_NPP,
# ymax=avg_year_NPP+sd_year_NPP), width=.1,
# position=position_dodge(.9))
# compbine precipitation (here from TVAN simulations with CLM, not ideal!)
tvan_comb$year = year(tvan_comb$DateTime)
tvan_comb %>%
group_by(year(DateTime)) %>%
mutate(annPPT = mean(PRECTmms,na.rm = TRUE)*3600*24*365, # converts from mm/s to mm/y
year = mean(year(DateTime))) %>%
ggplot(aes(x=year,y=annPPT)) +
geom_point()
annPPT = tvan_comb %>%
group_by(year(DateTime)) %>%
summarise(
PRECTann = mean(PRECTmms,na.rm = TRUE)*3600*24*365
)
monthPPT = tvan_comb %>%
group_by(yearMon) %>%
summarise(
PRECTmmd = mean(PRECTmms,na.rm = TRUE)*3600*24, #mm/day
year = year(DateTime),
month = month(DateTime)
)
summerPPT = monthPPT %>%
filter(month >=6 & month>9) %>%
group_by(year) %>%
summarise(PRECTsum = mean(PRECTmmd,na.rm = TRUE)*122 ) #sum daily to seasonal
annNPP = sad_prod_mod %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
group_by(year, veg_com) %>%
summarise(
NPPann = mean(NPP,na.rm = TRUE),
NPPsd = sd(NPP,na.rm = TRUE)
)
ann = right_join(annNPP,annPPT,by = c("year" = "year(DateTime)" ))
ann = right_join(ann, summerPPT, by ='year')
annAll = right_join(sad_prod_mod,annPPT,by = c("year" = "year(DateTime)"))
annAll = right_join(annAll, summerPPT, by ='year')
annAll %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
ggplot(aes(x = PRECTann, y = NPP,
group=factor(veg_com),
colour=factor(veg_com))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
ggtitle('Saddle NPP vs. Total Precip')+
xlab('Saddle total precip (2008-2019)') +
ylab('Saddle NPP (2008-2019)')
annAll %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
ggplot(aes(x = PRECTsum, y = NPP,
group=factor(veg_com),
colour=factor(veg_com))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
ggtitle('Saddle NPP vs. Summer Precip')+
xlab('Saddle summer precip (2008-2019)') +
ylab('Saddle NPP (2008-2019)')
ann %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
ggplot(aes(x = PRECTann, y = NPPann,
group=factor(veg_com),
colour=factor(veg_com))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
ggtitle('Saddle NPP vs. Total Precip')+
xlab('Saddle total precip (2008-2019)') +
ylab('Mean Saddle NPP (2008-2019)')
ann %>%
filter(veg_com!="ST" & veg_com!='SF') %>%
ggplot(aes(x = PRECTsum, y = NPPann,
group=factor(veg_com),
colour=factor(veg_com))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
ggtitle('Saddle NPP vs. Summer Precip')+
xlab('Saddle summer precip (2008-2019)')+
ylab('Mean Saddle NPP (2008-2019)')
# Get relevant meadow measurements: -- use purr to put in list; filter out tundra shrub and
# snow fence first
# sad_prod_FF <- sad_prod_sub %>%
# filter(veg_class == "FF")
# sad_prod_SB <- sad_prod_sub %>%
# filter(veg_class == "SB")
# sad_prod_MM <- sad_prod_sub %>%
# filter(veg_class == "MM")
# sad_prod_WM <- sad_prod_sub %>%
# filter(veg_class == "WM")
# sad_prod_DM <- sad_prod_sub %>%
# filter(veg_class == "DM")
################################################################################
# Load Saddle Catchment Sensor Network Data
################################################################################
writeLines("Reading in saddle sensor network data...")
sad_sens_data_raw <- vector(length = length(saddle_catch_sensntwk_data_fp$csv),
mode = "list")
sad_sens_data_raw <- lapply(seq_along(saddle_catch_sensntwk_data_fp$csv),
function(x) {
writeLines(paste0("Reading in ",
basename(saddle_catch_sensntwk_data_fp$csv[[x]])))
# replace date with chararacter
tmp_colclasses <- gsub("Date", "character", saddle_catch_sensntwk_data_fp$colclasses[[x]])
read.csv(saddle_catch_sensntwk_data_fp$csv[[x]],
header = T, sep = ",", quot = '"',
as.is = TRUE, na.strings = c("NA", "NaN", ""),
colClasses = tmp_colclasses)
})
names(sad_sens_data_raw) <- basename(unlist(saddle_catch_sensntwk_data_fp$csv))
sad_sens_data_all <- bind_rows(sad_sens_data_raw)
#writeLines("Reading in saddle sensor veg data...")
################################################################################
# Gather vegetation communities for Saddle Network plots
################################################################################
# Using Kelsey Elwood Carter's Community characterizations from her master's thesis
sensor_plot_com <- data.frame(plot = c(9,10,14, 16, 20, 21, 11, 15, 6,7,8,12,13,17,19),
veg_com_long = c(rep("Dry Meadow 1", 3),
rep("Dry Meadow 2", 3),
rep("Dry Meadow 3", 2),
rep("Moist Meadow", 4),
rep("Wet Meadow", 2),
"Subalpine")) %>%
mutate(veg_com = ifelse(grepl("Dry", veg_com_long), "DM",
ifelse(grepl("Moist", veg_com_long), "MM",
ifelse(grepl("Wet", veg_com_long), "WM",
ifelse(grepl("Subalpine", veg_com_long), "SA", NA)))),
plot = as.character(plot))
################################################################################
# Handle Saddle Network Soil Moisture and Temperature data
################################################################################
# Filter out questionable data from sensor network and collapse 10-minute readings
# into 30-minute readings. Also categorize the vegetation communities for each
# site
sad_sens_10min <- sad_sens_data_all %>%
mutate(timestamp = as.POSIXct(date, format = "%Y-%m-%d %H:%M:%OS", tz = "MST"),
date = as.Date(timestamp)) %>%
select(sensornode, timestamp, date, contains("soil")) %>%
#filter(sensornode == 6) %>%
# set flagged values to NA so they won't be used in averages
mutate(soiltemp_5cm_avg = ifelse(!is.na(flag_soiltemp_5cm_avg), NA, soiltemp_5cm_avg),
soiltemp_30cm_avg = ifelse(!is.na(flag_soiltemp_30cm_avg), NA, soiltemp_30cm_avg),
soilmoisture_a_5cm_avg = ifelse(!is.na(flag_soilmoisture_a_5cm_avg), NA,
soilmoisture_a_5cm_avg),
soilmoisture_a_30cm_avg = ifelse(!is.na(flag_soilmoisture_a_30cm_avg), NA,
soilmoisture_a_30cm_avg),
soilmoisture_b_5cm_avg = ifelse(!is.na(flag_soilmoisture_b_5cm_avg), NA,
soilmoisture_b_5cm_avg),
soilmoisture_b_30cm_avg = ifelse(!is.na(flag_soilmoisture_b_30cm_avg), NA,
soilmoisture_b_30cm_avg),
soilmoisture_c_5cm_avg = ifelse(!is.na(flag_soilmoisture_c_5cm_avg), NA,
soilmoisture_c_5cm_avg),
soilmoisture_c_30cm_avg = ifelse(!is.na(flag_soilmoisture_c_30cm_avg), NA,
soilmoisture_c_30cm_avg)) %>%
# Remove flag columns
select(-contains("flag")) %>%
# Remove soil moisture data when temperature <0 (frozen water messes with sensors)
mutate(soilmoisture_a_5cm_avg = ifelse(soiltemp_5cm_avg <= 0, NA,
soilmoisture_a_5cm_avg),
soilmoisture_a_30cm_avg = ifelse(soiltemp_30cm_avg <= 0, NA,
soilmoisture_a_30cm_avg),
soilmoisture_b_5cm_avg = ifelse(soiltemp_5cm_avg <= 0, NA,
soilmoisture_b_5cm_avg),
soilmoisture_b_30cm_avg = ifelse(soiltemp_30cm_avg <= 0, NA,
soilmoisture_b_30cm_avg),
soilmoisture_c_5cm_avg = ifelse(soiltemp_5cm_avg <= 0, NA,
soilmoisture_c_5cm_avg),
soilmoisture_c_30cm_avg = ifelse(soiltemp_30cm_avg <= 0, NA,
soilmoisture_c_30cm_avg)) %>%
# Group times by half-hour so half-hourly averages can be taken
mutate(Time = gsub(".{4}-.{2}-.{2} ", "", timestamp),
cleanTime =
strsplit(Time, ":") %>%
sapply(function(x){
x <- as.numeric(x)
x[1] + x[2]/60 + x[3]/(60*60)
}),
decimalTime = floor(cleanTime * 2)/2)
writeLines(paste0("Collapsing 10-minute soil sensor data into 30-minute chunks, \n",
"this may take a while..."))
# NOTE: this could probably be made more efficient if handled one file at a time. And then
# joining the 30-minute data together after each is combined
sad_sens_soilmoist_temp <- sad_sens_10min %>%
# Get half-hourly averages
group_by(date, decimalTime, sensornode) %>%
mutate(across(contains("soil"), list(~mean(., na.rm = TRUE)),
.names = "mean_{col}")) %>%
ungroup() %>%
select(sensornode, date, decimalTime, contains("mean_")) %>%
unique() %>%
# Join with vegetation classifications
left_join(sensor_plot_com, by = c("sensornode" = "plot")) %>%
# Remove sub alpine, and non-characterized vegetation communities
filter(!is.na(veg_com)) %>%
filter(veg_com != "SA")
# Subset the data so that the "a" sensor is used, unless that sensor is NA, then
# preferentially use "b", and then "c"
sad_sensnet_soil <- sad_sens_soilmoist_temp %>%
# if a is NA choose b
mutate(soilmoisture_5cm_sensor_letter = ifelse(is.na(mean_soilmoisture_a_5cm_avg),
"b", "a"),
soilmoisture_5cm_avg = ifelse(is.na(mean_soilmoisture_a_5cm_avg),
mean_soilmoisture_b_5cm_avg,
mean_soilmoisture_a_5cm_avg),
soilmoisture_30cm_sensor_letter = ifelse(is.na(mean_soilmoisture_a_30cm_avg),
"b", "a"),
soilmoisture_30cm_avg = ifelse(is.na(mean_soilmoisture_a_30cm_avg),
mean_soilmoisture_b_30cm_avg,
mean_soilmoisture_a_30cm_avg)) %>%
# if b is also NA choose c
mutate(soilmoisture_5cm_sensor_letter = ifelse(is.na(soilmoisture_5cm_avg),
"c", soilmoisture_5cm_sensor_letter),
soilmoisture_5cm_avg = ifelse(is.na(soilmoisture_5cm_avg),
mean_soilmoisture_c_5cm_avg,
soilmoisture_30cm_avg),
soilmoisture_30cm_sensor_letter = ifelse(is.na(soilmoisture_30cm_avg),
"c", soilmoisture_30cm_sensor_letter),
soilmoisture_30cm_avg = ifelse(is.na(soilmoisture_30cm_avg),
mean_soilmoisture_c_30cm_avg,
soilmoisture_30cm_avg)) %>%
# if c is also NA, make everything NA
mutate(soilmoisture_5cm_sensor_letter = ifelse(is.na(soilmoisture_5cm_avg),
NA, soilmoisture_5cm_sensor_letter),
soilmoisture_5cm_avg = ifelse(is.na(soilmoisture_5cm_avg),
NA,
soilmoisture_30cm_avg),
soilmoisture_30cm_sensor_letter = ifelse(is.na(soilmoisture_30cm_avg),
NA, soilmoisture_30cm_sensor_letter),
soilmoisture_30cm_avg = ifelse(is.na(soilmoisture_30cm_avg),
NA,
soilmoisture_30cm_avg)) %>%
select(sensornode, date, decimalTime, mean_soiltemp_5cm_avg, mean_soiltemp_30cm_avg,
soilmoisture_5cm_avg, soilmoisture_30cm_avg, veg_com,
soilmoisture_5cm_sensor_letter,
soilmoisture_30cm_sensor_letter) %>%
# rename to be generic enough to match Tvan soil columns
rename(soiltemp_upper_avg = mean_soiltemp_5cm_avg,
soiltemp_lower_avg = mean_soiltemp_30cm_avg,
soilmoisture_upper_avg = soilmoisture_5cm_avg,
soilmoisture_lower_avg = soilmoisture_30cm_avg,
sensnet_soilmoisture_5cm_sensor_letter = soilmoisture_5cm_sensor_letter,
sensnet_soilmoisture_30cm_sensor_letter = soilmoisture_30cm_sensor_letter,
Hour = decimalTime,
plot = sensornode) %>%
mutate(data_set = "Saddle_sensor_network_EDI_210_5cm_30cm_moisttemp_probes",
plot = as.character(plot),
upper_sensor_depth_cm = 5,
lower_sensor_depth_cm = 30) %>%
mutate(soilmoisture_upper_avg = soilmoisture_upper_avg * 100,
soilmoisture_lower_avg = soilmoisture_lower_avg * 100)
# Plotting soil moisture
# sad_sens_soilmoist_temp.nested <- sad_sens_soilmoist_temp %>%
# mutate(timestamp = as.Date(date, origin = paste0(date, " 00:00:00")) +
# lubridate::minutes(decimalTime * 60)) %>%
# #select(sensornode, date, decimalTime, timestamp) %>%
# pivot_longer(contains("soil"), names_to = "Variable", values_to = "Value") %>%
# group_by(veg_com) %>%
# nest()
# sad_sens_soilmoist_temp.plot <- sad_sens_soilmoist_temp.nested %>%
# mutate(plot = map2(data, veg_com, ~ ggplot(data = .x,
# aes(x = timestamp, y = Value)) +
# ggtitle(glue::glue("Vegetation Community: {.y}")) +
# geom_point(alpha = 0.3) +
# facet_wrap(~Variable, scales = "free_y", ncol = 2)
# )
# )
#
# pdf("~/Downloads/test.pdf")
# sad_sens_soilmoist_temp.plot$plot
# dev.off()
################################################################################
# Tvan soil moisture data
################################################################################
# Read in Tvan soil moisture and temperature data
tvan_soil <- read.table(file = tvan_data_soil, sep = ",",
skip = 2, header = FALSE)
tvan_soil_names <- read.table(file = tvan_data_soil, sep = ",",
header = TRUE, nrows = 1)
tvan_soil_units <- as.character(unname(unlist(tvan_soil_names[1,])))
colnames(tvan_soil) <- names(tvan_soil_names)
# Fix time, rename to match generic names of sensor network soil data, add informational
# columns about the data's origin, and vegetation community
tvan_soil_mod <- tvan_soil %>%
select(time, wc10, wc30, soil_temp, tc30, G) %>%
mutate(timestamp = time,
Hour = lubridate::hour(timestamp) +
lubridate::minute(timestamp)/60,
date = lubridate::date(timestamp)) %>%
select(-time, -timestamp) %>%
rename(soiltemp_upper_avg = soil_temp,
soiltemp_lower_avg = tc30,
soilmoisture_upper_avg = wc10,
soilmoisture_lower_avg = wc30) %>%
mutate(upper_sensor_depth_cm = 10,
lower_sensor_depth_cm = 30) %>%
mutate(veg_com = "FF",
plot = "Tvan_West",
data_set = "Tvan_West_Tower_10cm_30cm_moisttemp_probes")
plot(tvan_soil_mod$date, tvan_soil_mod$soiltemp_upper_avg,pch='.')
#ggplot(tvan_soil_mod, aes(x = DoY, y = soiltemp_upper_avg)) + geom_point()
################################################################################
# Combine Tvan and Sensor Network Soil and Moisture data
################################################################################
soilmoist_temp_comb <- full_join(sad_sensnet_soil, tvan_soil_mod,
by = c("date", "Hour",
"veg_com", "plot", "data_set",
"soiltemp_upper_avg",
"soiltemp_lower_avg",
"soilmoisture_upper_avg",
"soilmoisture_lower_avg",
"upper_sensor_depth_cm",
"lower_sensor_depth_cm"))
# Summarize the data by hour
soilmoist_temp_comb_hrly <- soilmoist_temp_comb %>%
group_by(Hour, veg_com) %>%
mutate_at(all_of(c("soiltemp_upper_avg",
"soiltemp_lower_avg",
"soilmoisture_upper_avg",
"soilmoisture_lower_avg")),
list(~mean(., na.rm = TRUE), ~sd(., na.rm = TRUE))) %>%
ungroup() %>%
mutate(soilmoisture_upper_avg = ifelse(soiltemp_upper_avg < 0, NA,
soilmoisture_upper_avg),
soilmoisture_lower_avg = ifelse(soiltemp_lower_avg < 0, NA,
soilmoisture_lower_avg)) %>%
mutate(data_information = paste0("data = ", data_set, " | ",
"sensnet_5cm_letter = ",
sensnet_soilmoisture_5cm_sensor_letter, " | ",
"sensnet_30cm_letter = ",
sensnet_soilmoisture_30cm_sensor_letter, " | ",
"upr_sens_depth = ", upper_sensor_depth_cm, " | ",
"lwr_sens_depth = ", lower_sensor_depth_cm)) %>%
select(Hour, ends_with("_avg_mean"), ends_with("_avg_sd"), veg_com,
data_information) %>%
unique()
# Summarize the data by daily averages
soilmoist_temp_comb_daily <- soilmoist_temp_comb %>%
mutate(DoY = yday(date),
month = month(date),
year = year(date)) %>%
# remove leap days and fix DoY
filter(!(leap_year(year) & DoY == 60)) %>%
mutate(DoY = if_else(leap_year(year) & (DoY > 59),
DoY - 1, DoY)) %>%
group_by(DoY, veg_com) %>%
mutate(across(all_of(c("soiltemp_upper_avg",
"soiltemp_lower_avg",
"soilmoisture_upper_avg",
"soilmoisture_lower_avg")),
.fns = list(dailyavg = ~mean(., na.rm = TRUE),
dailysd = ~sd(., na.rm = TRUE)))) %>%
ungroup() %>%
mutate(soilmoisture_upper_avg = ifelse(soiltemp_upper_avg < 0, NA,
soilmoisture_upper_avg),
soilmoisture_lower_avg = ifelse(soiltemp_lower_avg < 0, NA,
soilmoisture_lower_avg)) %>%
# construct a data information column with information about which dataset and
# sensor the data came from
mutate(data_information = paste0("data = ", data_set, " | ",
"sensnet_5cm_letter = ",
sensnet_soilmoisture_5cm_sensor_letter, " | ",
"sensnet_30cm_letter = ",
sensnet_soilmoisture_30cm_sensor_letter, " | ",
"upr_sens_depth = ", upper_sensor_depth_cm, " | ",
"lwr_sens_depth = ", lower_sensor_depth_cm)) %>%
select(DoY, month, ends_with("_avg_dailyavg"), ends_with("_avg_dailysd"),
veg_com, data_information) %>%
unique()
names(soilmoist_temp_comb_daily)
ggplot(soilmoist_temp_comb_daily, aes(x = DoY)) +
geom_line(aes(y = soiltemp_upper_avg_dailyavg, color = veg_com))
################################################################################
# Reformat data
################################################################################
# Reformatting several data frames to better match with simulation data
# Data frame 1:
# Rename flux variables to match tvan
# Half-hourly fluxes from Tvan; Comparable to the fell-field
# Variables: FSH (tvan), RN (tvan), LE (tvan), GPP (tvan)
tvan_comb_mod.diurnal_seasonal <- tvan_comb_mod.diurnal_seasonal %>%
rename(RNET_houravg = radNet_houravg,
RNET_hoursd = radNet_hoursd,
FSH_houravg = H_houravg,
FSH_hoursd = H_hoursd,
EFLX_LH_TOT_houravg = LE_houravg,
EFLX_LH_TOT_hoursd = LE_hoursd)
# July flux summary
jul_30_min_tvan <- jul_30_min_tvan %>%
rename(RNET_houravg = radNet_houravg,
RNET_hoursd = radNet_hoursd,
FSH_houravg = H_houravg,
FSH_hoursd = H_hoursd,
EFLX_LH_TOT_houravg = LE_houravg,
EFLX_LH_TOT_hoursd = LE_hoursd)
# Data frame 2:
# Daily averages for each vegetation community
# Variables: GPP (tvan), SoilTemp (tvan/sensor network),
# Soil Moisture (tvan/sensor network), snow depth (saddle grid),
daily_soilmoisttemp_gpp_snwdp <- soilmoist_temp_comb_daily %>%
rename(soilmoisture_data_info = data_information) %>%
# join with tvan GPP data
left_join(tvan_comb_mod.daily, by = c("DoY", "veg_com")) %>%
# join with snow depth data
left_join(sad_snw_daily, by = c("DoY", "veg_com")) %>%
mutate(ObsSim = "Obs")
################################################################################
# Combine and write out
################################################################################
# For each time-series of data, write out units and data
# Write out halfhourly fluxes:
writeLines("Writing out diurnal, daily, and annual data.")
# Diurnal-seasonal data
write.table(tvan_comb_mod.diurnal_seasonal,
file = paste0(DirOutBase, "/Diurnal_seasonal_summaries_", "tvan_flux.txt"),
row.names = FALSE, sep = "\t")
# Diurnal-seasonal data
write.table(jul_30_min_tvan,
file = paste0(DirOutBase, "/July_flux_summary_", "tvan_flux.txt"),
row.names = FALSE, sep = "\t")
# DoY data
write.table(daily_soilmoisttemp_gpp_snwdp,
file = paste0(DirOutBase,
"/Daily_soilmoisture_soiltemp_gpp_snwdpth_summaries.txt"),
row.names = FALSE, sep = "\t")
# Annual data
write.table(sad_prod_mod_ann,
file = paste0(DirOutBase,
"/annual_saddle_grid_NPP_summaries.txt"),
row.names = FALSE, sep = "\t")
# Unsummarized data
writeLines("Writing out data that has not been summarized by time.")
# Saddle sensor network soil data
write.table(sad_sensnet_soil,
file = paste0(DirOutBase,
"/sensor_network_soil_data_30_min.txt"),
row.names = FALSE, sep = "\t")
# Tvan soil data
write.table(tvan_soil_mod,
file = paste0(DirOutBase,
"/tvan_soil_data_30_min.txt"),
row.names = FALSE, sep = "\t")
# Snow depth data
write.table(sad_snw_forc_yrs,
file = paste0(DirOutBase,
"/saddle_grid_snow_depth_data_biweekly.txt"),
row.names = FALSE, sep = "\t")
# Productivity
write.table(sad_prod_mod,
file = paste0(DirOutBase,
"/saddle_grid_productivity_data.txt"),
row.names = FALSE, sep = "\t")
print('--- finished with script ---')