-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
380 lines (341 loc) · 17.7 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Import Statements
import numpy as np
import cv2, glob, math
import matplotlib.pyplot as plt
# Define a class to handle all help functions
class Helper():
def __init__(self):
image = cv2.imread(glob.glob("./assets/inputs/*jpg")[0])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Global Variable: image size in px as pair (height, width)
self.image_size = image.shape[:2]
# Global Variable: image height in px
self.image_height = self.image_size[0]
# Global Variable: image width in px
self.image_width = image.shape[1]
# Global Variable: camera transformation matrix
self.mtx = None
# Global Variable: inverse camera transformation matrix
self.inverse_matrix = None
# Global Variable: camera transformation matrix
self.dist = None
## Global Variable: source transformation matrix
self.src = np.float32([(575, 464), (707, 464), (258, 682),(1049, 682)])
## Global Variable: destination transformation matrix
self.dst = dst = np.float32([(450, 0), (self.image_width - 450,0), (450, self.image_height), (self.image_width - 450, self.image_height)])
def display_and_save(self, images, titles, columns=2, file_name=False, gray=False):
number_of_images = len(images)
rows = math.ceil(number_of_images / columns)
fig, axs = plt.subplots(rows, columns, figsize=(40, 10 * rows))
fig.subplots_adjust(hspace=.2, wspace=.001)
axs = axs.ravel()
for i in range(columns * rows):
axs[i].axis('off')
for index, image in enumerate(images):
if gray == True:
axs[index].imshow(image, cmap='gray')
else:
axs[index].imshow(image)
axs[index].set_title(titles[index], fontsize=30)
if file_name:
fig.savefig(file_name)
# plt.show()
def save(self, image, path):
plt.cla()
plt.clf()
plt.close()
plt.imshow(image)
plt.savefig(path)
def undistort(self, img):
return cv2.undistort(img, self.mtx, self.dist, None, self.mtx)
def unwarp(self, img):
# Calculate transformation matrix
matrix = cv2.getPerspectiveTransform(self.src, self.dst)
inverse_matrix = cv2.getPerspectiveTransform(self.dst, self.src)
# record inverse matrix
self.inverse_matrix = inverse_matrix
# Apply transformation
warped = cv2.warpPerspective(img, matrix, (self.image_width, self.image_height), flags=cv2.INTER_LINEAR)
return warped
# Define a function that thresholds the L-channel of HLS
# Use exclusive lower bound (>) and inclusive upper (<=)
def hls_lthresh(self, img, thresh=(220, 255)):
# 1) Convert to HLS color space
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
hls_l = hls[:,:,1]
hls_l = hls_l*(255/np.max(hls_l))
# 2) Apply a threshold to the L channel
binary_output = np.zeros_like(hls_l)
binary_output[(hls_l > thresh[0]) & (hls_l <= thresh[1])] = 1
# 3) Return a binary image of threshold result
return binary_output
# Define a function that thresholds the B-channel of LAB
# Use exclusive lower bound (>) and inclusive upper (<=), OR the results of the thresholds (B channel should capture
# yellows)
def lab_bthresh(self, img, thresh=(190,255)):
# 1) Convert to LAB color space
lab = cv2.cvtColor(img, cv2.COLOR_RGB2Lab)
lab_b = lab[:,:,2]
# don't normalize if there are no yellows in the image
if np.max(lab_b) > 175:
lab_b = lab_b*(255/np.max(lab_b))
# 2) Apply a threshold to the L channel
binary_output = np.zeros_like(lab_b)
binary_output[((lab_b > thresh[0]) & (lab_b <= thresh[1]))] = 1
# 3) Return a binary image of threshold result
return binary_output
def calc_curvature_and_center_dist(self, bin_img, l_fit, r_fit, l_lane_inds, r_lane_inds):
# Define conversions in x and y from pixels space to meters
ym_per_pix = 3.048/100 # meters per pixel in y dimension, lane line is 10 ft = 3.048 meters
xm_per_pix = 3.7/378 # meters per pixel in x dimension, lane width is 12 ft = 3.7 meters
left_curverad, right_curverad, center_dist = (0, 0, 0)
# Define y-value where we want radius of curvature
# I'll choose the maximum y-value, corresponding to the bottom of the image
h = bin_img.shape[0]
ploty = np.linspace(0, h-1, h)
y_eval = np.max(ploty)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = bin_img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Again, extract left and right line pixel positions
leftx = nonzerox[l_lane_inds]
lefty = nonzeroy[l_lane_inds]
rightx = nonzerox[r_lane_inds]
righty = nonzeroy[r_lane_inds]
if len(leftx) != 0 and len(rightx) != 0:
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Now our radius of curvature is in meters
# Distance from center is image x midpoint - mean of l_fit and r_fit intercepts
if r_fit is not None and l_fit is not None:
car_position = bin_img.shape[1]/2
l_fit_x_int = l_fit[0]*h**2 + l_fit[1]*h + l_fit[2]
r_fit_x_int = r_fit[0]*h**2 + r_fit[1]*h + r_fit[2]
lane_center_position = (r_fit_x_int + l_fit_x_int) /2
center_dist = (car_position - lane_center_position) * xm_per_pix
return round(left_curverad, 1), round(right_curverad, 1), round(center_dist, 1)
def draw_lane(self, original_img, binary_img, l_fit, r_fit):
new_img = np.copy(original_img)
if l_fit is None or r_fit is None:
return original_img
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_img).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
h,w = binary_img.shape
ploty = np.linspace(0, h-1, num=h)# to cover same y-range as image
left_fitx = l_fit[0]*ploty**2 + l_fit[1]*ploty + l_fit[2]
right_fitx = r_fit[0]*ploty**2 + r_fit[1]*ploty + r_fit[2]
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
cv2.polylines(color_warp, np.int32([pts_left]), isClosed=False, color=(255,0,255), thickness=15)
cv2.polylines(color_warp, np.int32([pts_right]), isClosed=False, color=(0,255,255), thickness=15)
# Warp the blank back to original image space using inverse perspective matrix (inverse_matrix)
newwarp = cv2.warpPerspective(color_warp, self.inverse_matrix, (w, h))
# Combine the result with the original image
result = cv2.addWeighted(new_img, 1, newwarp, 0.5, 0)
return result
def draw_data(self, original_img, curv_rad, center_dist):
new_img = np.copy(original_img)
h = new_img.shape[0]
font = cv2.FONT_HERSHEY_DUPLEX
text = 'Curve radius: ' + '{:04.2f}'.format(curv_rad) + 'm'
cv2.putText(new_img, text, (40,70), font, 1.5, (200,255,155), 2, cv2.LINE_AA)
direction = ''
if center_dist > 0:
direction = 'right'
elif center_dist < 0:
direction = 'left'
abs_center_dist = abs(center_dist)
text = '{:04.3f}'.format(abs_center_dist) + 'm ' + direction + ' of center'
cv2.putText(new_img, text, (40,120), font, 1.5, (200,255,155), 2, cv2.LINE_AA)
return new_img
# Image pre processing pipeline
def pre_pipeline(self, image):
# Undistort Image
image = self.undistort(image)
# Perspective Transform
image = self.unwarp(image)
# HLS L-channel Threshold
image_L = self.hls_lthresh(image)
# Lab B-channel Threshold
image_B = self.lab_bthresh(image)
# Combine HLS and Lab B channel thresholds
combined = np.zeros_like(image_B)
combined[(image_L == 1) | (image_B == 1)] = 1
return combined
def calibrate_camera(self):
# Regex: find all calibration files
input_images = sorted(glob.glob("./assets/camera_cal/calibration*.jpg"))
print("Calibrating camera with {} images.".format(len(input_images)))
# used later to calibrate cameras
obj_points = []
img_points = []
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
obj_point = np.zeros((6*9, 3), np.float32)
obj_point[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
for file_name in input_images:
# Load images
image = cv2.imread(file_name)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Find chessboard corners
ret, corners = cv2.findChessboardCorners(gray_image, (9, 6), None)
# If found, draw & display
if ret == True:
img_points.append(corners)
obj_points.append(obj_point)
# Calibrate Camera
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, self.image_size, None, None)
# record data
self.mtx = mtx
self.dist = dist
# Define method to fit polynomial to binary image with lines extracted, using sliding window
def sliding_window_polyfit(self, img):
# Take a histogram of the bottom half of the image
histogram = np.sum(img[img.shape[0]//2:,:], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2)
quarter_point = np.int(midpoint//2)
# Previously the left/right base was the max of the left/right half of the histogram
# this changes it so that only a quarter of the histogram (directly to the left/right) is considered
leftx_base = np.argmax(histogram[quarter_point:midpoint]) + quarter_point
rightx_base = np.argmax(histogram[midpoint:(midpoint+quarter_point)]) + midpoint
# Choose the number of sliding windows
nwindows = 10
# Set height of windows
window_height = np.int(img.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 80
# Set minimum number of pixels found to recenter window
minpix = 40
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Rectangle data for visualization
rectangle_data = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = img.shape[0] - (window+1)*window_height
win_y_high = img.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
rectangle_data.append((win_y_low, win_y_high, win_xleft_low, win_xleft_high, win_xright_low, win_xright_high))
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit, right_fit = (None, None)
# Fit a second order polynomial to each
if len(leftx) != 0:
left_fit = np.polyfit(lefty, leftx, 2)
if len(rightx) != 0:
right_fit = np.polyfit(righty, rightx, 2)
visualization_data = (rectangle_data, histogram)
return left_fit, right_fit, left_lane_inds, right_lane_inds, visualization_data
# Define method to fit polynomial to binary image based upon a previous fit (chronologically speaking);
# this assumes that the fit will not change significantly from one video frame to the next
def polyfit_using_previous_fit(self, binary_warped, left_fit_prev, right_fit_prev):
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 80
left_lane_inds = ((nonzerox > (left_fit_prev[0]*(nonzeroy**2) + left_fit_prev[1]*nonzeroy + left_fit_prev[2] - margin)) &
(nonzerox < (left_fit_prev[0]*(nonzeroy**2) + left_fit_prev[1]*nonzeroy + left_fit_prev[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit_prev[0]*(nonzeroy**2) + right_fit_prev[1]*nonzeroy + right_fit_prev[2] - margin)) &
(nonzerox < (right_fit_prev[0]*(nonzeroy**2) + right_fit_prev[1]*nonzeroy + right_fit_prev[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit_new, right_fit_new = (None, None)
if len(leftx) != 0:
# Fit a second order polynomial to each
left_fit_new = np.polyfit(lefty, leftx, 2)
if len(rightx) != 0:
right_fit_new = np.polyfit(righty, rightx, 2)
return left_fit_new, right_fit_new, left_lane_inds, right_lane_inds
# Define a class to receive the characteristics of each line detection
class Line():
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
#average x values of the fitted line over the last n iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = []
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
#number of detected pixels
self.pixel_count = None
def add_fit(self, fit, inds):
# add a found fit to the line, up to n
if fit is not None:
if self.best_fit is not None:
# if we have a best fit, see how this new fit compares
self.diffs = abs(fit-self.best_fit)
if (self.diffs[0] > 0.001 or \
self.diffs[1] > 1.0 or \
self.diffs[2] > 100.) and \
len(self.current_fit) > 0:
# bad fit! abort! abort! ... well, unless there are no fits in the current_fit queue, then we'll take it
self.detected = False
else:
self.detected = True
self.pixel_count = np.count_nonzero(inds)
self.current_fit.append(fit)
if len(self.current_fit) > 5:
# throw out old fits, keep newest n
self.current_fit = self.current_fit[len(self.current_fit)-5:]
self.best_fit = np.average(self.current_fit, axis=0)
# or remove one from the history, if not found
else:
self.detected = False
if len(self.current_fit) > 0:
# throw out oldest fit
self.current_fit = self.current_fit[:len(self.current_fit)-1]
if len(self.current_fit) > 0:
# if there are still any fits in the queue, best_fit is their average
self.best_fit = np.average(self.current_fit, axis=0)