-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathllamacpp_mock_api.py
89 lines (66 loc) · 3.33 KB
/
llamacpp_mock_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import sys
from mistral_inference.mamba import Mamba
from mistral_inference.generate import generate_mamba
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage, AssistantMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
print("Loading Codestral Mamba...", end="", flush=True)
if len(sys.argv) == 1:
raise Exception("Error: Codestral Mamba's location was not provided and is required. For example, \"python llamacpp_mock_api.py '/home/user/mistral_models/mamba-codestral-7B-v0.1'\".")
# Load Codestral Mamba into memory for future use.
tokenizer = MistralTokenizer.from_model("codestral-22b")
model = Mamba.from_folder(sys.argv[1])
print("Done!", flush=True)
print()
def prompt_to_request(prompt):
# Remove unnecessary tokens and spacing from Continue's prompt format.
prompt = prompt.replace("</s>\n<s>", "")
prompt = prompt.replace("[INST] ", "[INST]")
prompt = prompt.replace(" [/INST]", "[/INST]")
# Consume Continue's prompt string and transform it into a list of
# messages which are containted within their respective mistral-inference
# message objects.
messages = []
prompt_start = 0
while True:
user_message_start = prompt.find("[INST]", prompt_start) + 6
user_message_end = prompt.find("[/INST]", prompt_start)
assistant_message_end = prompt.find("[INST]", user_message_end)
messages += [UserMessage(content=prompt[user_message_start:user_message_end])]
if assistant_message_end != -1:
messages += [AssistantMessage(content=prompt[user_message_end + 7:assistant_message_end])]
else:
break
prompt_start = assistant_message_end
# Send back the final chat completion request.
return ChatCompletionRequest(messages=messages)
def run_chat_completion(prompt, max_new_tokens):
# Transform the prompt format Continue uses into a chat completion
# request that mistral-inference supports.
completion_request = prompt_to_request(prompt)
tokens = tokenizer.encode_chat_completion(completion_request).tokens
# Start Codestral Mamba inferencing.
out_tokens, _ = generate_mamba([tokens], model, max_tokens=max_new_tokens, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
# Send the response back.
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
return result
from flask import Flask, jsonify, request, Response
app = Flask(__name__)
@app.route("/completion", methods=["POST"])
def completion():
content = request.json
print("Incoming request: " + content)
# Perform Codestral Mamba chat completion.
response = run_chat_completion(content["prompt"], content["n_predict"])
response = jsonify({"content": response}).get_data(as_text=True)
print("Outgoing response: " + response)
# Llama.cpp's HTTP server uses Server-Sent Events to stream results to the client
# so we reimplement it here, for a single event sent to Continue which contains
# the entire Codestral Mamba response.
def generate():
yield "data: " + response + "\n"
yield "data: [DONE]\n"
# Send back the response.
return Response(generate())
# Run the Flask API server.
app.run(port=8080)