-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_eval_eeg.py
126 lines (105 loc) · 4.74 KB
/
gen_eval_eeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os, sys
import numpy as np
import torch
from einops import rearrange
from PIL import Image
import torchvision.transforms as transforms
from config import *
import wandb
import datetime
import argparse
from config import Config_Generative_Model
from dataset import create_EEG_dataset
from dc_ldm.ldm_for_eeg import eLDM
def to_image(img):
if img.shape[-1] != 3:
img = rearrange(img, 'c h w -> h w c')
img = 255. * img
return Image.fromarray(img.astype(np.uint8))
def channel_last(img):
if img.shape[-1] == 3:
return img
return rearrange(img, 'c h w -> h w c')
def normalize(img):
if img.shape[-1] == 3:
img = rearrange(img, 'h w c -> c h w')
img = torch.tensor(img)
img = img * 2.0 - 1.0 # to -1 ~ 1
return img
def wandb_init(config):
wandb.init( project="dreamdiffusion",
group='eval',
anonymous="allow",
config=config,
reinit=True)
class random_crop:
def __init__(self, size, p):
self.size = size
self.p = p
def __call__(self, img):
if torch.rand(1) < self.p:
return transforms.RandomCrop(size=(self.size, self.size))(img)
return img
def get_args_parser():
parser = argparse.ArgumentParser('Double Conditioning LDM Finetuning', add_help=False)
# project parameters
parser.add_argument('--root', type=str, default='../dreamdiffusion/')
parser.add_argument('--dataset', type=str, default='GOD')
# parser.add_argument('--model_path', type=str, default='/root/autodl-tmp/DreamDiffusion/dreamdiffusion/exps/results/generation/28-11-2023-20-37-07/checkpoint_best.pth')
# parser.add_argument('--model_path', type=str, default='/root/autodl-tmp/DreamDiffusion/dreamdiffusion/exps/results/generation/04-01-2024-10-34-26/checkpoint_best.pth')
parser.add_argument('--model_path', type=str, default='/root/autodl-tmp/DreamDiffusion/checkpoint_best.pth')
return parser
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
root = args.root
target = args.dataset
sd = torch.load(args.model_path, map_location='cpu')
config = sd['config']
# update paths
config.root_path = root
config.pretrain_mbm_path = '/root/autodl-tmp/DreamDiffusion/pretrains/eeg_pretain/checkpoint.pth'
config.pretrain_gm_path = '../dreamdiffusion/pretrains/'
print(config.__dict__)
output_path = os.path.join(config.root_path, 'results', 'eval',
'%s'%(datetime.datetime.now().strftime("%d-%m-%Y-%H-%M-%S")))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
crop_pix = int(config.crop_ratio*config.img_size)
img_transform_train = transforms.Compose([
normalize,
transforms.Resize((512, 512)),
# random_crop(config.img_size-crop_pix, p=0.5),
# transforms.Resize((256, 256)),
channel_last
])
img_transform_test = transforms.Compose([
normalize, transforms.Resize((512, 512)),
channel_last
])
splits_path = "../dreamdiffusion/datasets/block_splits_by_image_single.pth"
dataset_train, dataset_test = create_EEG_dataset(eeg_signals_path = config.eeg_signals_path, splits_path = splits_path,
image_transform=[img_transform_train, img_transform_test], subject = 4)
num_voxels = dataset_test.dataset.data_len
# num_voxels = dataset_test.num_voxels
print(len(dataset_test))
# prepare pretrained mae
pretrain_mbm_metafile = torch.load(config.pretrain_mbm_path, map_location='cpu')
# create generateive model
generative_model = eLDM(pretrain_mbm_metafile, num_voxels,
device=device, pretrain_root=config.pretrain_gm_path, logger=config.logger,
ddim_steps=config.ddim_steps, global_pool=config.global_pool, use_time_cond=config.use_time_cond)
# m, u = model.load_state_dict(pl_sd, strict=False)
generative_model.model.load_state_dict(sd['model_state_dict'], strict=False)
print('load ldm successfully')
state = sd['state']
os.makedirs(output_path, exist_ok=True)
grid, _ = generative_model.generate(dataset_train, config.num_samples,
config.ddim_steps, config.HW, 10) # generate 10 instances
grid_imgs = Image.fromarray(grid.astype(np.uint8))
grid_imgs.save(os.path.join(output_path, f'./samples_train.png'))
grid, samples = generative_model.generate(dataset_test, config.num_samples,
config.ddim_steps, config.HW, limit=None, state=state, output_path = output_path) # generate 10 instances
grid_imgs = Image.fromarray(grid.astype(np.uint8))
grid_imgs.save(os.path.join(output_path, f'./samples_test.png'))
metric, metric_list = get_eval_metric(samples, avg=True)
print(metric_dict)