-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
36 lines (31 loc) · 1.44 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor
def linear_regression(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
coefficients = model.coef_
intercept = model.intercept_
return mse, r2, coefficients, intercept
def knn_regression(X, y, k=5):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = KNeighborsRegressor(n_neighbors=k)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
return mse, r2
def random_forest_regression(X, y, n_estimators, max_depth=None, random_state=42):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=random_state)
model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=random_state)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
return mse, r2