-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
130 lines (101 loc) · 4.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from dataset.semi import SemiDataset
from model.semseg.deeplabv2 import DeepLabV2
from utils.dataset_name import *
from utils.utils import count_params, meanIOU, color_map
import argparse
from copy import deepcopy
import numpy as np
import os
from PIL import Image
import torch
from torch.nn import CrossEntropyLoss, DataParallel
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
NUM_CLASSES = {'DFC22': 12, 'iSAID': 15, 'MER': 9, 'MSL': 9, 'Vaihingen': 5, 'GID-15': 15}
DATASET = 'DFC22' # ['DFC22', 'iSAID', 'MER', 'MSL', 'Vaihingen', 'GID-15']
WEIGHTS = 'Your local path'
DFC22_DATASET_PATH = 'Your local path'
iSAID_DATASET_PATH = 'Your local path'
MER_DATASET_PATH = 'Your local path'
MSL_DATASET_PATH = 'Your local path'
Vaihingen_DATASET_PATH = 'Your local path'
GID15_DATASET_PATH = 'Your local path'
def parse_args():
parser = argparse.ArgumentParser(description='WSCL Framework')
# basic settings
parser.add_argument('--data-root', type=str, default=None)
parser.add_argument('--dataset', type=str, choices=['DFC22', 'iSAID', 'MER', 'MSL', 'Vaihingen', 'GID-15'],
default=DATASET)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--backbone', type=str, choices=['resnet50', 'resnet101'], default='resnet101')
parser.add_argument('--model', type=str, choices=['deeplabv3plus', 'pspnet', 'deeplabv2'],
default='deeplabv2')
parser.add_argument('--save-path', type=str, default='test_results/' + WEIGHTS.split('/')[-1].replace('.pth', ''))
args = parser.parse_args()
return args
def create_path(path):
if not os.path.exists(path):
os.makedirs(path)
def main(args):
create_path(args.save_path)
model = DeepLabV2(args.backbone, NUM_CLASSES[args.dataset])
model.load_state_dict(torch.load(WEIGHTS))
model = DataParallel(model).cuda()
valset = SemiDataset(args.dataset, args.data_root, 'val', None)
valloader = DataLoader(valset, batch_size=8,
shuffle=False, pin_memory=True, num_workers=8, drop_last=False)
eval(model, valloader, args)
def eval(model, valloader, args):
model.eval()
tbar = tqdm(valloader)
data_list = []
with torch.no_grad():
for img, mask, _ in tbar:
img = img.cuda()
pred = model(img)
pred = torch.argmax(pred, dim=1).cpu().numpy()
data_list.append([mask.numpy().flatten(), pred.flatten()])
filename = os.path.join(args.save_path, 'result.txt')
get_iou(data_list, NUM_CLASSES[args.dataset], filename, DATASET)
def get_iou(data_list, class_num, save_path=None, dataset_name=None):
from multiprocessing import Pool
from utils.metric import ConfusionMatrix
ConfM = ConfusionMatrix(class_num)
f = ConfM.generateM
pool = Pool()
m_list = pool.map(f, data_list)
pool.close()
pool.join()
for m in m_list:
ConfM.addM(m)
aveJ, j_list, M = ConfM.jaccard()
if dataset_name == 'MSL' or dataset_name == 'MER':
classes, _ = MARS()
elif dataset_name == 'iSAID':
classes, _ = iSAID()
elif dataset_name == 'GID-15':
classes, _ = GID15()
elif dataset_name == 'Vaihingen':
classes, _ = Vaihingen()
elif dataset_name == 'DFC22':
classes, _ = DFC22()
for i, iou in enumerate(j_list):
print('class {:2d} {:12} IU {:.2f}'.format(i, classes[i], j_list[i] * 100))
print('meanIOU {:.2f}'.format(aveJ * 100) + '\n')
if save_path:
with open(save_path, 'w') as f:
for i, iou in enumerate(j_list):
f.write('class {:2d} {:12} IU {:.2f}'.format(i, classes[i], j_list[i] * 100) + '\n')
f.write('meanIOU {:.2f}'.format(aveJ * 100) + '\n')
if __name__ == '__main__':
args = parse_args()
if args.data_root is None:
args.data_root = {'GID-15': GID15_DATASET_PATH,
'iSAID': iSAID_DATASET_PATH,
'MER': MER_DATASET_PATH,
'MSL': MSL_DATASET_PATH,
'Vaihingen': Vaihingen_DATASET_PATH,
'DFC22': DFC22_DATASET_PATH}[args.dataset]
print(args)
main(args)