-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
335 lines (284 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import argparse
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import torch
import torch.nn.functional as F
from models.generator import APNet
from models.discriminator import APdisc
from utils.func import fAW, feature_loss, discriminator_loss, generator_loss
from torch.utils.tensorboard import SummaryWriter
import datetime
import random
from dataloader import load_data
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_avail", type=str, default="6", help="available GPUs")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--init_lr", type=float, default=2e-4, help="initial learning rate")
parser.add_argument("--cut_len", type=int, default=8000, help="cut length, default is 8000")
parser.add_argument("--epochs", type=int, default=120, help="number of epochs of training")
parser.add_argument("--steps", type=int, default=500000, help="number of steps where training stops")
parser.add_argument("--data_dir", type=str, default='your_path/VCTK_wav_single_trim',
help="dir of VCTK_wav(trim) dataset")
parser.add_argument("--save_model_dir", type=str, default='./ckpts',
help="dir of saved model")
parser.add_argument("--loss_weights", type=list, default=[45, 100, 45],
help="weights of Amplitude Spectrum Loss, Phase Spectrum Loss, and Complex Spectrum Loss")
args = parser.parse_args()
def set_seed(seed):
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
class Trainer:
def __init__(self, train_ds, test_ds, gpu_id: int):
self.n_fft = 1024
self.win = 320
self.hop = 80
self.train_ds = train_ds
self.test_ds = test_ds
self.model = APNet(Freqbin=513).cuda()
self.discriminator = APdisc().cuda()
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=args.init_lr, betas=(0.8, 0.99), weight_decay=0.01)
self.optimizer_disc = torch.optim.AdamW(self.discriminator.parameters(), lr=args.init_lr, betas=(0.8, 0.99), weight_decay=0.01)
self.model = DDP(self.model, device_ids=[gpu_id])
self.discriminator = DDP(self.discriminator, device_ids=[gpu_id])
self.gpu_id = gpu_id
def forward_generator_step(self, clean, noisy):
# Normalization
c = torch.sqrt(noisy.size(-1) / torch.sum((noisy**2.0), dim=-1))
noisy, clean = torch.transpose(noisy, 0, 1), torch.transpose(clean, 0, 1)
# [T, batchsize] * [batchsize,] -> [T, batchsize]
noisy, clean = torch.transpose(noisy * c, 0, 1), torch.transpose(
clean * c, 0, 1
)
# 输入 (batchsize,t)
noisy_spec = torch.stft(
noisy,
self.n_fft,
self.hop, # 窗口的跳跃步长,也就是相邻窗口之间的样本数
win_length=self.win,
window=torch.hann_window(self.win).to(self.gpu_id),
onesided=True, # onesided=True 表示只计算并返回正频率。
return_complex=True,
)
clean_spec = torch.stft(
clean,
self.n_fft,
self.hop,
win_length=self.win,
window=torch.hann_window(self.win).to(self.gpu_id),
onesided=True,
return_complex=True,
)
# -> (batchsize,F,T)
clean_real = clean_spec.real
clean_imag = clean_spec.imag
clean_mag = torch.log(torch.abs(clean_spec).clamp(1e-8))
clean_pha = torch.angle(clean_spec)
# -> (batchsize,F,T)
noisy_mag = torch.log(torch.abs(noisy_spec).clamp(1e-8))
noisy_pha = torch.angle(noisy_spec)
# -> (batchsize,F,T)
est_mag, est_pha = self.model(noisy_mag, noisy_pha)
# -> (batchsize,F,T)
# 还原
est_real = torch.exp(est_mag) * torch.cos(est_pha)
est_imag = torch.exp(est_mag) * torch.sin(est_pha)
# -> (batchsize,F,T)
est_spec = torch.stack([est_real, est_imag], dim=3)
# -> (batchsize,F,T,2)
est_spec=torch.view_as_complex(est_spec)
est_audio = torch.istft(
est_spec,
self.n_fft,
self.hop,
win_length=self.win,
window=torch.hann_window(self.win).to(self.gpu_id),
onesided=True,
)
assert est_audio.size(-1) == clean.size(-1)
# -> (batchsize,t)
# return 除audio都为(batchsize,F,T)
return {
"est_pha": est_pha,
"est_mag": est_mag,
"est_audio": est_audio,
"clean_pha": clean_pha,
"clean_mag": clean_mag,
"clean_audio": clean,
"clean_complex": clean_spec,
"est_complex": est_spec,
}
def calculate_generator_loss(self, generator_outputs):
predict_fake_metric, fmap_est = self.discriminator(
generator_outputs["est_audio"]
)
loss_adv = generator_loss(predict_fake_metric)
_, fmap_clean = self.discriminator(generator_outputs["clean_audio"])
loss_FM = feature_loss(fmap_est, fmap_clean)
loss_A = F.mse_loss(
generator_outputs["est_mag"], generator_outputs["clean_mag"]
)
IP = generator_outputs["est_pha"]-generator_outputs["clean_pha"]
GD = torch.diff(generator_outputs["est_pha"], dim = 1) - torch.diff(generator_outputs["clean_pha"], dim = 1)
IAF = torch.diff(generator_outputs["est_pha"], dim = 2) - torch.diff(generator_outputs["clean_pha"], dim = 2)
loss_P= torch.mean(fAW(IP)) + torch.mean(fAW(GD)) + torch.mean(fAW(IAF))
loss_C = F.mse_loss(
generator_outputs["est_complex"].real, generator_outputs["clean_complex"].real
) + F.mse_loss(
generator_outputs["est_complex"].imag, generator_outputs["clean_complex"].imag
)
# time_loss = torch.mean(
# torch.abs(generator_outputs["est_audio"] - generator_outputs["clean"])
# )
loss = (
args.loss_weights[0] * loss_A
+ args.loss_weights[1] * loss_P
+ args.loss_weights[2] * loss_C
+ loss_adv
+ loss_FM
)
return loss
def calculate_discriminator_loss(self, generator_outputs):
predict_fake_metric_est, _ = self.discriminator(generator_outputs["est_audio"].detach())
predict_fake_metric_clean, _ = self.discriminator(generator_outputs["clean_audio"])
return discriminator_loss(predict_fake_metric_clean, predict_fake_metric_est)
def train_step(self, batch):
# Train generator
clean = batch[0].to(self.gpu_id)
noisy = batch[1].to(self.gpu_id)
# one_labels = torch.ones(args.batch_size, 11).to(self.gpu_id)
generator_outputs = self.forward_generator_step(
clean,
noisy,
)
# generator_outputs["one_labels"] = one_labels
# # 检测generator_outputs
# for key in generator_outputs.keys():
# assert generator_outputs[key].size(0)==args.batch_size
# print("done")
loss = self.calculate_generator_loss(generator_outputs)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# Train Discriminator
discrim_loss_metric = self.calculate_discriminator_loss(generator_outputs)
self.optimizer_disc.zero_grad()
discrim_loss_metric.backward()
self.optimizer_disc.step()
assert not torch.isnan(loss).any()
assert not torch.isnan(discrim_loss_metric).any()
return loss.item(), discrim_loss_metric.item()
@torch.no_grad()
def test_step(self, batch):
clean = batch[0].to(self.gpu_id)
noisy = batch[1].to(self.gpu_id)
# one_labels = torch.ones(clean.size(0), 11).to(self.gpu_id)
generator_outputs = self.forward_generator_step(
clean,
noisy,
)
# generator_outputs["one_labels"] = one_labels
# generator_outputs["clean"] = clean
loss = self.calculate_generator_loss(generator_outputs)
discrim_loss_metric = self.calculate_discriminator_loss(generator_outputs)
assert not torch.isnan(loss).any()
assert not torch.isnan(discrim_loss_metric).any()
return loss.item(), discrim_loss_metric.item()
def test(self):
self.model.eval()
self.discriminator.eval()
gen_loss_total = 0.0
disc_loss_total = 0.0
for idx, batch in enumerate(self.test_ds):
step = idx + 1
loss, disc_loss = self.test_step(batch)
gen_loss_total += loss
disc_loss_total += disc_loss
gen_loss_avg = gen_loss_total / step
disc_loss_avg = disc_loss_total / step
# template = "GPU: {}, Generator loss: {}, Discriminator loss: {}"
# logging.info(template.format(self.gpu_id, gen_loss_avg, disc_loss_avg))
return gen_loss_avg, disc_loss_avg
def train(self):
scheduler_G = torch.optim.lr_scheduler.StepLR(
self.optimizer, step_size=1, gamma=0.999
)
scheduler_D = torch.optim.lr_scheduler.StepLR(
self.optimizer_disc, step_size=1, gamma=0.999
)
best_gen_loss = float(1000000)
now_time = datetime.datetime.now().strftime('%m_%d_%H_%M')
steps = 0
epoch = 0
if self.gpu_id == 0:
writer = SummaryWriter(log_dir=os.path.join("runs", now_time))
while steps < args.steps and epoch < args.epochs:
epoch += 1
if self.gpu_id == 0:
print("Epoch start:", epoch, now_time, "steps:", steps)
self.model.train()
self.discriminator.train()
gen_loss_total = 0.0
disc_loss_total = 0.0
for idx, batch in enumerate(self.train_ds):
step = idx + 1
steps += 1
loss, disc_loss = self.train_step(batch)
gen_loss_total += loss
disc_loss_total += disc_loss
if steps >= args.steps:
break
gen_loss_train = gen_loss_total / step
disc_loss_train= disc_loss_total / step
gen_loss_test, disc_loss_test= self.test() # 只用生成器loss
if self.gpu_id == 0:
writer.add_scalar('gen_loss_train',gen_loss_train , epoch)
writer.add_scalar('disc_loss_train',disc_loss_train , epoch)
writer.add_scalar('gen_loss_test',gen_loss_test , epoch)
writer.add_scalar('disc_loss_test',disc_loss_test , epoch)
if gen_loss_test < best_gen_loss:
# torch.save(self.model.module.state_dict(), path)
best_model = self.model.module.state_dict()
best_gen_loss = gen_loss_test
best_epoch = epoch
writer.add_scalar('best_loss', gen_loss_test, epoch)
# best_path = path
print("Epoch end, genloss:", gen_loss_train, gen_loss_test)
# 更新学习率
scheduler_G.step()
scheduler_D.step()
# 将最好的模型复制到best_ckpt文件夹下
if self.gpu_id == 0:
print("Best epoch: {}, Best loss: {}".format(best_epoch, best_gen_loss))
save_path = os.path.join(args.save_model_dir, "best_ckpt_"+now_time)
torch.save(best_model, save_path)
writer.close()
def ddp_setup(rank, world_size):
# 设置主节点的地址和端口号
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
# 初始化进程组 NCCL通信
init_process_group(backend="nccl", rank=rank, world_size=world_size)
def main(rank: int, world_size: int, args):
set_seed(1234)
ddp_setup(rank, world_size)
torch.cuda.set_device(rank)
if rank == 0:
print(args)
available_gpus = [
torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())
]
print(available_gpus)
train_ds, test_ds = load_data(
args.data_dir, args.batch_size, n_cpu=2, cut_len=args.cut_len
)
trainer = Trainer(train_ds, test_ds, rank)
trainer.train()
destroy_process_group()
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_avail
world_size = len(os.environ["CUDA_VISIBLE_DEVICES"].split(","))
mp.spawn(main, args=(world_size, args), nprocs=world_size)