-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathohem.py
57 lines (50 loc) · 2.34 KB
/
ohem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
# see https://github.com/charlesCXK/TorchSemiSeg/blob/main/furnace/seg_opr/loss_opr.py
class ProbOhemCrossEntropy2d(nn.Module):
def __init__(self, ignore_index, reduction='mean', thresh=0.7, min_kept=256,
down_ratio=1, use_weight=False):
super(ProbOhemCrossEntropy2d, self).__init__()
self.ignore_index = ignore_index
self.thresh = float(thresh)
self.min_kept = int(min_kept)
self.down_ratio = down_ratio
if use_weight:
weight = torch.FloatTensor(
[0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489,
0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955,
1.0865, 1.1529, 1.0507])
self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction,
weight=weight,
ignore_index=ignore_index)
else:
self.criterion = torch.nn.CrossEntropyLoss(reduction=reduction,
ignore_index=ignore_index)
def forward(self, pred, target):
b, c, h, w = pred.size()
target = target.view(-1)
valid_mask = target.ne(self.ignore_index)
target = target * valid_mask.long()
num_valid = valid_mask.sum()
prob = F.softmax(pred, dim=1)
prob = (prob.transpose(0, 1)).reshape(c, -1)
if self.min_kept > num_valid:
pass
elif num_valid > 0:
prob = prob.masked_fill_(~valid_mask, 1)
mask_prob = prob[
target, torch.arange(len(target), dtype=torch.long)]
threshold = self.thresh
if self.min_kept > 0:
index = mask_prob.argsort()
threshold_index = index[min(len(index), self.min_kept) - 1]
if mask_prob[threshold_index] > self.thresh:
threshold = mask_prob[threshold_index]
kept_mask = mask_prob.le(threshold)
target = target * kept_mask.long()
valid_mask = valid_mask * kept_mask
target = target.masked_fill_(~valid_mask, self.ignore_index)
target = target.view(b, h, w)
return self.criterion(pred, target)