-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
414 lines (333 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from __future__ import absolute_import
import os
import numpy as np
import matplotlib
from tqdm import tqdm
import time
import resource
import warnings
import torch
from torch.utils.data import DataLoader
from skimage import exposure
from data.fetus_dataset_coco import COCO_Dataset, collate_fn
from utils.config import opt
from utils import array_tool as at
from utils.vis_tool import visdom_bbox
from utils.eval_tool import eval_detection_voc
from utils.boxlist import BoxList
from utils.gpu_tools import get_world_size, get_global_rank, get_local_rank, get_master_ip
from utils.distributed import get_rank, synchronize, reduce_loss_dict, DistributedSampler, all_gather
from utils.graph_config import _C as graph_opt
from utils.build_opt import make_optimizer, make_lr_scheduler
from model.topograph_net import Topograph
from model.graph_matching import build_graph_matching_head
from model.discriminator import Discriminator
warnings.filterwarnings("ignore")
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (20480, rlimit[1]))
matplotlib.use('agg')
class Trainer():
def __init__(self, opt):
if opt.part == 'heart':
opt.n_class = 10 # include background
elif opt.part == 'head':
opt.n_class = 8
elif opt.part == 'cardiac':
opt.n_class = 5
elif opt.part == 'mmwhs':
opt.n_class = 5
else:
raise ValueError("Dataset Error!")
graph_opt.MODEL.FCOS.NUM_CLASSES = opt.n_class
self.opt = opt
print('Load Fetus Dataset')
train_source_set = COCO_Dataset(self.opt, operation='train')
self.train_source_dataloader = DataLoader(train_source_set,
collate_fn = collate_fn(opt),
batch_size=opt.batch_size,
shuffle=True,
drop_last=True,
num_workers=self.opt.num_workers)
train_target_set = COCO_Dataset(self.opt, operation='train', domain='Target')
self.train_target_dataloader = DataLoader(train_target_set,
collate_fn = collate_fn(opt),
batch_size=opt.batch_size,
shuffle=True,
drop_last=True,
num_workers=self.opt.num_workers)
vaildset = COCO_Dataset(self.opt, operation='val', domain='Target')
self.vaild_dataloader = DataLoader(vaildset,
collate_fn = collate_fn(opt),
batch_size=1,
num_workers=opt.test_num_workers,
shuffle=False,)
testset = COCO_Dataset(self.opt, operation='test', domain='Target')
self.test_dataloader = DataLoader(testset,
collate_fn = collate_fn(opt),
batch_size=1,
num_workers=self.opt.test_num_workers,
shuffle=False,)
print('Build BackBone Network & Graph Matching Module')
self.model = Topograph(self.opt, Topograph_m=True).to(device=opt.device)
self.graph_matching = build_graph_matching_head(graph_opt, self.opt.out_channel).to(device=opt.device)
# discriminator
if opt.discriminator:
self.dis_dict = dict()
self.dis_dict['dis_p2'] = Discriminator(grad_reverse_lambda=0.1) # grad_reverse_lambda=0.02
self.dis_dict['dis_p3'] = Discriminator(grad_reverse_lambda=0.1)
self.dis_dict['dis_p4'] = Discriminator(grad_reverse_lambda=0.1)
self.dis_dict['dis_p5'] = Discriminator(grad_reverse_lambda=0.1)
print('Model Construct Completed')
print('Build Optimizer & Scheduler for BackBone and Graph Matching')
self.optimizer = {}
self.scheduler = {}
self.optimizer["backbone"] = make_optimizer(graph_opt, self.model, name='backbone')
self.optimizer["middle_head"] = make_optimizer(graph_opt, self.graph_matching, name='backbone')
self.scheduler["backbone"] = make_lr_scheduler(graph_opt, self.optimizer["backbone"], name='middle_head')
self.scheduler["middle_head"] = make_lr_scheduler(graph_opt, self.optimizer["middle_head"], name='middle_head')
#discriminator
if opt.discriminator:
self.optimizer['Dis_P2'] = make_optimizer(graph_opt, self.dis_dict['dis_p2'], name='discriminator')
self.optimizer['Dis_P3'] = make_optimizer(graph_opt, self.dis_dict['dis_p3'], name='discriminator')
self.optimizer['Dis_P4'] = make_optimizer(graph_opt, self.dis_dict['dis_p4'], name='discriminator')
self.optimizer['Dis_P5'] = make_optimizer(graph_opt, self.dis_dict['dis_p5'], name='discriminator')
self.scheduler['Dis_P2'] = make_lr_scheduler(graph_opt, self.optimizer['Dis_P2'], name='discriminator')
self.scheduler['Dis_P3'] = make_lr_scheduler(graph_opt, self.optimizer['Dis_P3'], name='discriminator')
self.scheduler['Dis_P4'] = make_lr_scheduler(graph_opt, self.optimizer['Dis_P3'], name='discriminator')
self.scheduler['Dis_P5'] = make_lr_scheduler(graph_opt, self.optimizer['Dis_P3'], name='discriminator')
for key in self.dis_dict.keys():
self.dis_dict[key].to(device=opt.device)
if self.opt.distributed:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = torch.nn.parallel.DistributedDataParallel(
self.model,
device_ids=[self.opt.local_rank],
output_device=self.opt.local_rank,
broadcast_buffers=True,
find_unused_parameters=True,)
self.graph_matching = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.graph_matching)
self.graph_matching = torch.nn.parallel.DistributedDataParallel(
self.graph_matching,
device_ids=[self.opt.local_rank],
output_device=self.opt.local_rank,
broadcast_buffers=True,
find_unused_parameters=True,)
def train(self):
if self.opt.load_path:
self.load(self.opt.load_path)
print('load pretrained model from %s' % self.opt.load_path)
best_map = 0
dis_loss = {}
batch_step = 0
lr_ = self.opt.lr
for epoch in range(self.opt.epoch):
self.model.train()
self.graph_matching.train()
len_source = len(self.train_source_dataloader)
len_target = len(self.train_target_dataloader)
max_len = max(len_source, len_target)
source_iter = iter(self.train_source_dataloader)
target_iter = iter(self.train_target_dataloader)
for _ in tqdm(range(max_len)):
try:
imgs_src, targets_src, _ = next(source_iter)
except StopIteration:
source_iter = iter(self.train_source_dataloader)
imgs_src, targets_src, _ = next(source_iter)
try:
imgs_tgt, _, _ = next(target_iter)
except StopIteration:
target_iter = iter(self.train_target_dataloader)
imgs_tgt, _, _ = next(target_iter)
targets_src = [target.to(device=opt.device) for target in targets_src]
# NE
imgs_sp_s = [
torch.tensor(
exposure.match_histograms(
img.permute(1, 2, 0).numpy(),
img_target.permute(1, 2, 0).numpy()
)
).permute(2, 0, 1)
for img, img_target in zip(imgs_src.tensors, imgs_tgt.tensors)
]
imgs_src = torch.stack(imgs_sp_s, dim=0).float()
(features_src, _, _, _), _, losses = \
self.model(imgs_src.to(device=opt.device), image_sizes=None, targets=targets_src, train=True, domain='Source')
(features_tgt, cls_pred_tgt, box_pred_tgt, center_pred_tgt), _, _ = \
self.model(imgs_tgt.tensors.to(device=opt.device), image_sizes=None, targets=None, train=True, domain='Target')
# flops, params = profile(self.model, inputs=(imgs_src.to(device=opt.device), None, targets_src, True, 'Source'))
# print('FLOPs = ' + str(flops/1000**3) + 'G')
# print('Params = ' + str(params/1000**2) + 'M')
score_maps_tgt = self.model._forward_target(cls_pred_tgt, box_pred_tgt, center_pred_tgt)
(_, _), middle_head_loss = \
self.graph_matching(None, (features_src, features_tgt), targets=targets_src, score_maps=score_maps_tgt)
# discriminator
if self.opt.discriminator:
for layer, layer_name in enumerate(['p2', 'p3', 'p4', 'p5']):
dis_loss["loss_adv_%s" % layer_name] = \
0.1 * self.dis_dict["dis_%s" % layer_name]((features_src[layer],features_tgt[layer])) #
loss_cls = losses['loss_cls'].mean()
loss_box = losses['loss_box'].mean()
loss_center = losses['loss_center'].mean()
backbone_loss = loss_cls + loss_box + loss_center
loss_matching = sum(loss for loss in middle_head_loss.values())
if self.opt.discriminator:
dis_losses = sum(loss for loss in dis_loss.values())
overall_loss = backbone_loss + dis_losses + loss_matching
else:
overall_loss = backbone_loss + loss_matching
for opt_k in self.optimizer:
self.optimizer[opt_k].zero_grad()
overall_loss.backward()
for opt_k in self.optimizer:
self.optimizer[opt_k].step()
eval_result = self.eval(self.vaild_dataloader, test_num=self.opt.test_num)
print(f"backbone_loss:{backbone_loss.item()}")
print(f'graph_matching_loss:{loss_matching.item()}')
if self.opt.discriminator:
print(f'discriminator_loss:{dis_losses.item()}')
log_info = 'epoch:{}, map:{},loss:{}'.format(str(epoch),
str(round(eval_result['map'], 4)),
str(overall_loss.item()))
print(log_info)
# Update optimizers with scheduler
for scheduler_k in self.scheduler:
self.scheduler[scheduler_k].step()
if eval_result['map'] > best_map and epoch> 5: #eval_result['map'] > best_map and epoch >= 5: eval_result['map'] > 0.7
best_map = eval_result['map']
best_path = self.save(best_map=best_map)
if epoch == opt.epoch-1:
self.load(best_path)
test_result = self.eval(self.test_dataloader, test_num=self.opt.test_num)
log_info = 'final test ---> epoch:{}, map:{},loss:{}'.format(str(epoch),
str(test_result['map']),
str(overall_loss.item()))
print(log_info)
break
def accumulate_predictions(self, predictions):
all_predictions = all_gather(predictions)
if get_rank() != 0:
return
predictions = {}
for p in all_predictions:
predictions.update(p)
ids = list(sorted(predictions.keys()))
if len(ids) != ids[-1] + 1:
print('Evaluation results is not contiguous')
predictions = [predictions[i] for i in ids]
return predictions
@torch.no_grad()
def eval(self, dataloader, test_num=10000):
self.model.eval()
pred_bboxes, pred_labels, pred_scores = list(), list(), list()
gt_bboxes, gt_labels, gt_difficults = list(), list(), list()
for ids, (imgs, gt_targets, ids) in tqdm(enumerate(dataloader)):
preds = {}
imgs = imgs.tensors.to(device=opt.device)
gt_targets = [target.to('cpu') for target in gt_targets]
pred, _ = self.model(imgs, imgs.shape[-2:], train=False)
pred = [p.to('cpu') for p in pred]
preds = pred
for idx, pred in enumerate(preds):
_pred_bboxes = pred.box.numpy()
_pred_labels = pred.fields['labels'].numpy()
_pred_scores = pred.fields['scores'].numpy()
_gt_bboxes_ = gt_targets[idx].box.numpy()
_gt_labels_ = gt_targets[idx].fields['labels'].numpy()
if _pred_bboxes.shape[0] == 0:
continue
else:
pred_bboxes += [_pred_bboxes]
pred_labels += [_pred_labels]
pred_scores += [_pred_scores]
gt_bboxes += [_gt_bboxes_]
gt_labels += [_gt_labels_]
# gt_difficults.append(gt_difficults_)
if ids == test_num: break
gt_difficults = None
result = eval_detection_voc(
pred_bboxes, pred_labels, pred_scores,
gt_bboxes, gt_labels, gt_difficults,
use_07_metric=True)
return result
def save(self, save_optimizer=False, save_path=None, **kwargs):
"""serialize models include optimizer and other info
return path where the model-file is stored.
Args:
save_optimizer (bool): whether save optimizer.state_dict().
save_path (string): where to save model, if it's None, save_path
is generate using time str and info from kwargs.
Returns:
save_path(str): the path to save models.
"""
save_dict = dict()
save_dict['model'] = self.model.state_dict()
save_dict['config'] = opt._state_dict()
if save_optimizer:
for opt_k in self.optimizer:
save_dict['optimizer'][opt_k] = self.optimizer[opt_k].state_dict()
if save_path is None:
timestr = time.strftime('%m%d%H%M')
# save_path = f'checkpoints/mbqu_{self.opt.slices[0]}_{self.opt.selected_source_hospital[0].split("_")[1]}-{self.opt.selected_target_hospital[0].split("_")[1]}_{timestr}' # gpu{self.opt.local_rank}
save_path = f'checkpoints/res101pre_gpu{self.opt.local_rank}_{self.opt.part}_{self.opt.selected_source_hospital}-{self.opt.selected_target_hospital}_{timestr}'
for k_, v_ in kwargs.items():
save_path += '_%s' % v_
save_dir = os.path.dirname(save_path)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(save_dict, save_path)
return save_path
def load(self, path, load_optimizer=True, parse_opt=False,):
state_dict = torch.load(path, map_location=self.opt.device)
if 'model' in state_dict:
self.model.load_state_dict(state_dict['model'])
else: # legacy way, for backward compatibility
self.model.load_state_dict(state_dict)
return self
if parse_opt:
self.opt._parse(state_dict['config'])
if 'optimizer' in state_dict and load_optimizer:
self.optimizer.load_state_dict(state_dict['optimizer'])
def main(rank, opt):
try:
opt.local_rank
except AttributeError:
opt.global_rank = rank
opt.local_rank = opt.enable_GPUs_id[rank]
else:
if opt.distributed:
opt.global_rank = rank
opt.local_rank = opt.enable_GPUs_id[rank]
if opt.distributed:
torch.cuda.set_device(int(opt.local_rank))
torch.distributed.init_process_group(backend='nccl',
init_method=opt.init_method,
world_size=opt.world_size,
rank=opt.global_rank,
group_name='mtorch'
)
print('using GPU {}-{} for training'.format(
int(opt.global_rank), int(opt.local_rank)
))
if opt.local_rank == opt.enable_GPUs_id[0]:
wandb_init()
if torch.cuda.is_available():
opt.device = torch.device("cuda:{}".format(opt.local_rank))
else:
opt.device = 'cpu'
Train_ = Trainer(opt)
Train_.train()
if __name__ == '__main__':
# setting distributed configurations
opt.world_size = len(opt.enable_GPUs_id)
opt.init_method = f"tcp://{get_master_ip()}:{23455}"
opt.distributed = True if opt.world_size > 1 else False
# setup distributed parallel training environments
if get_master_ip() == "127.0.0.1" and opt.distributed:
# manually launch distributed processes
torch.multiprocessing.spawn(main, nprocs=opt.world_size, args=(opt,))
else:
# multiple processes have been launched by openmpi
opt.local_rank = opt.enable_GPUs_id[0]
opt.global_rank = opt.enable_GPUs_id[0]
main(opt.local_rank, opt)