-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
116 lines (85 loc) · 4.22 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import argparse
import torch
import torchvision.utils as vutils
from src.data.loader import ScanLoader
from src.utils import get_obj_from_str, sample_sequence
from src.vq_utils import load_vqmodel, decode_to_img
from src.model.myformer import MyFormer
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str)
parser.add_argument('--ckpt_path', type=str, default='ckpts/generator.pt')
parser.add_argument("--vqmodel_config", type=str, default="config/realestate_vqmodel.yaml")
parser.add_argument('--output_root', type=str, default='outputs')
args = parser.parse_args()
device = 'cuda:0'
vocab_size = 16384 + 1
vq_model = load_vqmodel(args.vqmodel_config, device)
vq_model.eval()
model = MyFormer(vocab_size, 16*16).to(device)
ckpt = torch.load(args.ckpt_path, map_location=device)
model.load_state_dict(ckpt['state_dict'], strict=False)
model.eval()
loader = ScanLoader(
args.data_root,
context_num = 16,
context_obs_num = 4,
device = device
)
os.makedirs(args.output_root, exist_ok=True)
scene_root = os.path.join(
args.output_root,
os.path.basename(args.data_root)
)
os.makedirs(scene_root, exist_ok=True)
os.makedirs(os.path.join(scene_root, 'output'), exist_ok=True)
with torch.no_grad():
for target_vid in loader.novel_vids:
print(target_vid)
batch = loader.get_context_and_query(target_vid)
ctx_rgb = (batch['ctx_rgb'].permute(0, 3, 1, 2) + 1)/2
ctx_mask = (batch['ctx_mask'].permute(0, 3, 1, 2) + 1)/2
ctx_hint = (batch['ctx_hint'].permute(0, 3, 1, 2) + 1)/2
ctx_view_type = torch.ones(ctx_rgb.shape).to(batch['ctx_view_type']) * (batch['ctx_view_type'][..., None, None, None] * 0.5)
#query_rgb_gt = (batch['tar_rgb_gt'].permute(0, 3, 1, 2) + 1)/2
query_rgb = (batch['tar_rgb'].permute(0, 3, 1, 2) + 1)/2
query_mask = (batch['tar_mask'].permute(0, 3, 1, 2) + 1)/2
query_hint = (batch['tar_hint'].permute(0, 3, 1, 2) + 1)/2
query_view_type = torch.ones(query_rgb.shape).to(batch['tar_view_type']) * (batch['tar_view_type'][..., None, None, None] * 0.5)
analysis_root = os.path.join(scene_root, 'analysis', str(target_vid))
os.makedirs(analysis_root, exist_ok=True)
vutils.save_image(ctx_rgb, os.path.join(analysis_root, 'ctx_rgb.jpg'), normalize=True)
vutils.save_image(ctx_mask, os.path.join(analysis_root, 'ctx_mask.jpg'), normalize=True)
vutils.save_image(ctx_hint, os.path.join(analysis_root, 'ctx_hint.jpg'), normalize=True)
vutils.save_image(ctx_view_type, os.path.join(analysis_root, 'ctx_view_type.jpg'), normalize=True)
#vutils.save_image(query_rgb_gt, os.path.join(analysis_root, 'gt_rgb.jpg'), normalize=True)
vutils.save_image(query_rgb, os.path.join(analysis_root, 'query_rgb.jpg'), normalize=True)
vutils.save_image(query_mask, os.path.join(analysis_root,'query_mask.jpg'), normalize=True)
vutils.save_image(query_hint, os.path.join(analysis_root, 'query_hint.jpg'), normalize=True)
vutils.save_image(query_view_type, os.path.join(analysis_root, 'query_view_type.jpg'), normalize=True)
for key in batch:
batch[key] = batch[key][None, ...].to(device)
inp_rgb, \
inp_hint, \
inp_mask, \
inp_pose, \
inp_rays, \
inp_view_type = loader.make_model_input(batch, 0)
cond_h = model.encode(
inp_rgb,
inp_hint,
inp_mask,
inp_pose,
inp_rays,
inp_view_type
)
bsz = cond_h.shape[0]
cond_h = cond_h.permute(1, 0, 2).contiguous()
seq_x = torch.ones((bsz, 1), dtype=torch.long, device=device) * (vocab_size-1)
generated, roll_h = sample_sequence(model, seq_x, cond_h, 1, 16*16, do_sample=False)
indcs = torch.tensor(generated, dtype=torch.long).to(device)
dec = decode_to_img(vq_model, indcs, [bsz, 256, 16, 16])
dec = (dec + 1) / 2
vutils.save_image(dec.cpu(), os.path.join(analysis_root, 'decode_rgb.jpg'), normalize=True)
dec = torch.nn.functional.interpolate(dec, size=[480, 640], mode='bicubic')
vutils.save_image(dec.cpu(), os.path.join(scene_root, 'output', f'{target_vid}.jpg'), normalize=True)