-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_pose_estimation.py
181 lines (150 loc) · 7.39 KB
/
test_pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os, sys
import argparse
import json
import torch
import numpy as np
from omegaconf import OmegaConf
import torchvision.utils as vutils
from torchvision import transforms
from PIL import Image
import rembg
from src.pose_estimation import load_model_from_config, load_image, estimate_poses, estimate_elevs
from src.sampling import sample_images
from src.utils import build_output, remove_background, group_cropping
if __name__ == '__main__':
np.random.seed(98052)
torch.manual_seed(98052)
torch.cuda.manual_seed(98052)
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str)
parser.add_argument('--output', type=str)
parser.add_argument('--min_timestep', type=float, default=0.2)
parser.add_argument('--max_timestep', type=float, default=0.21)
parser.add_argument('--seed_cand_num', type=int, default=8)
parser.add_argument('--probe_min_timestep', type=float, default=0.2)
parser.add_argument('--probe_max_timestep', type=float, default=0.21)
parser.add_argument('--explore_type', type=str, default='triangular', choices=['pairwise', 'triangular'])
parser.add_argument('--refine_type', type=str, default='triangular', choices=['pairwise', 'triangular'])
parser.add_argument('--probe_bsz', type=int, default=16)
parser.add_argument('--adjust_factor', type=float, default=10.0)
parser.add_argument('--adjust_iters', type=int, default=10)
parser.add_argument('--adjust_bsz', type=int, default=1)
parser.add_argument('--refine_factor', type=float, default=1.0)
parser.add_argument('--refine_iters', type=int, default=600)
parser.add_argument('--refine_bsz', type=int, default=1)
parser.add_argument('--gen_image', action='store_true')
parser.add_argument('--no_rembg', action='store_true')
parser.add_argument('--bkg_threshold', type=float, default=0.9)
parser.add_argument('--ckpt_path', type=str, default='ckpts/zero123-xl.ckpt')
parser.add_argument('--matcher_ckpt_path', type=str, default='ckpts/indoor_ds_new.ckpt')
parser.add_argument('--est_elev', type=str, default='all')
parser.add_argument('--overwrite', action='store_true')
args = parser.parse_args()
print(args)
device = 'cuda:0'
config_path = 'src/configs/sd-objaverse-finetune-c_concat-256.yaml'
config = OmegaConf.load(config_path)
model = load_model_from_config(config, args.ckpt_path, device=device)
model.eval()
width = 256
height = 256
###### Process Input ######
if os.path.isdir(args.input):
data_root = args.input
if data_root.endswith('/'):
data_root = data_root[:-1]
inames = [ fname for fname in sorted(os.listdir(data_root)) if (fname.lower().endswith('.png') or fname.lower().endswith('.jpg') or fname.lower().endswith('.webp')) ]
vids = [ iname.split('.')[0] for iname in inames ]
img_paths = { iname.split('.')[0] : os.path.join(data_root, iname) for iname in inames }
obj_ent = {
'name': os.path.basename(data_root),
'anchor_vid': vids[0],
'target_vids': vids[1:],
'img_paths': img_paths,
'init_poses': {}
}
obj_name_list = [ obj_ent ]
elif args.input.endswith('.json'):
with open(args.input, 'r') as fin:
jdata = json.load(fin)
data_root = jdata['data_root']
obj_name_list = jdata['samples']
else:
assert f'Invalid Input: {args.input}'
###### Estimation for each Entity ######
for obj_ent in obj_name_list[:]:
np.random.seed(98052)
torch.manual_seed(98052)
torch.cuda.manual_seed(98052)
noise = np.random.randn(args.probe_bsz, 4, 32, 32)
obj_name = obj_ent['name']
anchor_vid = obj_ent['anchor_vid']
target_vids = obj_ent['target_vids']
init_poses = obj_ent['init_poses']
img_paths = obj_ent['img_paths'] if 'img_paths' in obj_ent else {}
anchor_vid = f'{anchor_vid:03d}' if isinstance(anchor_vid, int) else anchor_vid
target_vids = [ f'{vid:03d}' if isinstance(vid, int) else vid for vid in target_vids ]
print(obj_name, anchor_vid, target_vids)
name = '+'.join([vid for vid in target_vids])
name = obj_name + '_' + anchor_vid + '+' + name
obj_path = os.path.join(data_root, obj_name)
save_root = os.path.join(args.output, name)
if not args.overwrite and os.path.exists(os.path.join(save_root, f'pose.json')):
print('Already exists:', os.path.join(save_root, f'pose.json'), flush=True)
continue
os.makedirs(save_root, exist_ok=True)
if args.no_rembg:
np_images = []
for vid in [anchor_vid] + target_vids:
img_path = img_paths[vid] if vid in img_paths else os.path.join(obj_path, 'images', f'{vid}.png')
img = load_image(img_path, threshold=args.bkg_threshold)
np_images.append(img)
else:
rembg_session = rembg.new_session()
images = []
for vid in [anchor_vid] + target_vids:
img_path = img_paths[vid] if vid in img_paths else os.path.join(obj_path, 'images', f'{vid}.png')
img = Image.open(img_path)
img = remove_background(img, rembg_session=rembg_session, force=True)
images.append(img)
np_images = group_cropping(images, width, height)
images = []
for vid, img in zip([anchor_vid] + target_vids, np_images):
img = transforms.ToTensor()(img).unsqueeze(0).to(device)
img = img * 2 - 1
img = transforms.functional.resize(img, [height, width])
images.append(img)
vutils.save_image((img + 1) / 2, os.path.join(save_root, f'{vid}.png'))
elevs, elev_ranges = estimate_elevs(
model, images, est_type=args.est_elev, matcher_ckpt_path=args.matcher_ckpt_path
)
result_poses, aux_data = estimate_poses(
model, images,
seed_cand_num=args.seed_cand_num,
explore_type=args.explore_type,
refine_type=args.refine_type,
probe_ts_range=[args.probe_min_timestep, args.probe_max_timestep],
ts_range=[args.min_timestep, args.max_timestep],
probe_bsz=args.probe_bsz,
adjust_factor=args.adjust_factor,
adjust_iters=args.adjust_iters,
adjust_bsz=args.adjust_bsz,
refine_factor=args.refine_factor,
refine_iters=args.refine_iters,
refine_bsz=args.refine_bsz,
noise=noise,
elevs=elevs,
elev_ranges=elev_ranges
)
if args.gen_image:
os.makedirs(os.path.join(save_root, 'gen'), exist_ok=True)
'''generate target images'''
for i in range(0, len(target_vids)):
theta, azimuth, radius = result_poses[i][0], result_poses[i][1], result_poses[i][2]
output_imgs = sample_images(model, images[0], theta, azimuth, radius, n_samples=3)
for oi, img in enumerate(output_imgs):
pil_img = Image.fromarray(img)
pil_img.save(os.path.join(save_root, 'gen', f'{anchor_vid}_{target_vids[i]}_{oi}.png'))
jdata = build_output(anchor_vid, target_vids, result_poses, aux_data, obj_path)
with open(os.path.join(save_root, f'pose.json'), 'w+') as fout:
json.dump(jdata, fout, indent=4)