forked from cpmusco/bksvd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbksvd.m
102 lines (91 loc) · 2.63 KB
/
bksvd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [U,S,V] = bksvd(A, k, iter, bsize, center)
%--------------------------------------------------------------------------
% Randomized block Krylov iteration for truncated singular value decomposition
% Computes approximate top singular vectors and corresponding values
% Described in Musco, Musco, 2015 (http://arxiv.org/abs/1504.05477)
%
% usage :
%
% input:
% * A : matrix to decompose
% * k : number of singular vectors to compute, default = 6
% * iter : number of iterations, default = 3
% * bsize : block size, must be >= k, default = k
% * center : set to true if A's rows should be mean centered before the
% singular value decomposition (e.g. when performing principal component
% analysis), default = false
%
%
% output:
% k singular vector/value pairs.
% * U : a matrix whose columns are approximate top left singular vectors for A
% * S : a diagonal matrix whose entries are A's approximate top singular values
% * V : a matrix whose columns are approximate top right singular vectors for A
%
% U*S*V' is a near optimal rank-k approximation for A
%--------------------------------------------------------------------------
% Check input arguments and set defaults.
if nargin > 5
error('bksvd:TooManyInputs','requires at most 5 input arguments');
end
if nargin < 1
error('bksvd:TooFewInputs','requires at least 1 input argument');
end
if nargin < 2
k = 6;
end
k = min(k,min(size(A)));
if nargin < 3
iter = 3;
end
if nargin < 4
bsize = k;
end
if nargin < 5
center = false;
end
if(k < 1 || iter < 1 || bsize < k)
error('bksvd:BadInput','one or more inputs outside required range');
end
% Calculate row mean if rows should be centered.
u = zeros(1,size(A,2));
if(center)
u = mean(A);
end
l = ones(size(A,1),1);
% We want to iterate on the smaller dimension of A.
[n, ind] = min(size(A));
tpose = false;
if(ind == 1)
tpose = true;
l = u'; u = ones(1,size(A,1));
A = A';
end
% Allocate space for Krylov subspace.
K = zeros(size(A,2),bsize*iter);
% Random block initialization.
block = randn(size(A,2),bsize);
[block,R] = qr(block,0);
% Preallocate space for temporary products.
T = zeros(size(A,2),bsize);
% Construct and orthonormalize Krlov Subspace.
% Orthogonalize at each step using economy size QR decomposition.
for i=1:iter
T = A*block - l*(u*block);
block = A'*T - u'*(l'*T);
[block,R] = qr(block,0);
K(:,(i-1)*bsize+1:i*bsize) = block;
end
[Q,R] = qr(K,0);
% Rayleigh-Ritz postprocessing with economy size dense SVD.
T = A*Q - l*(u*Q);
[Ut,St,Vt] = svd(T,0);
S = St(1:k,1:k);
if(~tpose)
U = Ut(:,1:k);
V = Q*Vt(:,1:k);
else
V = Ut(:,1:k);
U = Q*Vt(:,1:k);
end
end