-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcalculate_metrics.py
217 lines (181 loc) · 6.83 KB
/
calculate_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import ImageReward
import numpy as np
import pandas as pd
import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image
from tqdm.auto import tqdm
import dist
@torch.no_grad()
def calc_pick_or_clip_scores(model, image_inputs, text_inputs, batch_size=50):
assert len(image_inputs) == len(text_inputs["input_ids"])
assert len(text_inputs.keys()) == 2
scores = torch.zeros(len(image_inputs))
for i in range(0, len(image_inputs), batch_size):
image_batch = image_inputs[i : i + batch_size]
text_batch = {
"input_ids": text_inputs["input_ids"][i : i + batch_size],
"attention_mask": text_inputs["attention_mask"][i : i + batch_size],
}
# embed
with torch.cuda.amp.autocast():
image_embs = model.get_image_features(image_batch)
image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
with torch.cuda.amp.autocast():
text_embs = model.get_text_features(**text_batch)
text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
# score
scores[i : i + batch_size] = (text_embs * image_embs).sum(-1)
return scores.cpu()
@torch.no_grad()
def calculate_image_reward_score(
images,
prompts,
device="cuda",
batch_size=50,
image_reward_path="ImageReward-v1.0",
):
model = ImageReward.load(image_reward_path, device=device).eval()
scores = []
for i in range(0, len(prompts), batch_size):
# text encode
with torch.amp.autocast("cuda"):
text_input = model.blip.tokenizer(
prompts[i: i + batch_size],
padding="max_length",
truncation=True,
max_length=35,
return_tensors="pt",
).to(device)
processed_images = torch.stack(
[
model.preprocess(image).to(device)
for image in images[i: i + batch_size]
]
)
image_embeds = model.blip.visual_encoder(processed_images)
# text encode cross attention with image
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long
).to(device)
text_output = model.blip.text_encoder(
text_input.input_ids,
attention_mask=text_input.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
txt_features = text_output.last_hidden_state[:, 0].float() # (feature_dim)
rewards = model.mlp(txt_features)
rewards = (rewards - model.mean) / model.std
scores.extend(rewards[:, 0].tolist())
return np.mean(scores)
@torch.no_grad()
def calculate_scores(
images,
prompts,
device="cuda",
clip_model_name_or_path="laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
pickscore_model_name_or_path="yuvalkirstain/PickScore_v1",
image_reward_path=None,
):
processor = AutoProcessor.from_pretrained(clip_model_name_or_path)
clip_model = AutoModel.from_pretrained(clip_model_name_or_path).eval().to(device)
pickscore_model = (
AutoModel.from_pretrained(pickscore_model_name_or_path).eval().to(device)
)
image_inputs = processor(
images=images,
return_tensors="pt",
)[
"pixel_values"
].to(device)
text_inputs = processor(
text=prompts,
padding="max_length",
truncation=True,
max_length=77,
return_tensors="pt",
).to(device)
print("Evaluating PickScore...")
pick_score = calc_pick_or_clip_scores(
pickscore_model, image_inputs, text_inputs
).mean()
print("Evaluating CLIP ViT-H-14 score...")
clip_score = calc_pick_or_clip_scores(
clip_model, image_inputs, text_inputs
).mean()
print("Evaluating ImageReward...")
image_reward = calculate_image_reward_score(
images,
prompts,
device,
image_reward_path=image_reward_path,
)
image_reward = torch.full_like(clip_score, image_reward)
return pick_score, clip_score, image_reward
@torch.no_grad()
def distributed_metrics_with_csv(
pipe,
csv_path,
args,
):
pipe.switti.eval()
max_count = args.metrics_max_count
rank_batches, *_ = prepare_prompts(csv_path, args.eval_batch_size, max_count)
assert max_count % (args.eval_batch_size * dist.get_world_size()) == 0
local_images, local_prompts = [], []
for batch in tqdm(rank_batches, unit="batch", disable=(dist.get_rank() != 0)):
texts = [str(prompt) for prompt in batch
for _ in range(args.num_images_for_metrics)]
image_tensors = pipe(
prompt=texts,
seed=args.seed,
cfg=args.guidance,
top_k=args.top_k,
top_p=args.top_p,
more_smooth=False,
return_pil=False,
)
local_images.extend(image_tensors)
local_prompts.extend(texts)
local_images = torch.stack(local_images).cuda()
local_pick_score, local_clip_score, local_image_reward = calculate_scores(
[to_PIL_image(image) for image in local_images.clone()],
local_prompts,
device=dist.get_device(),
clip_model_name_or_path=args.clip_model_name_or_path,
pickscore_model_name_or_path=args.pickscore_model_name_or_path,
image_reward_path=args.image_reward_path,
)
# Done.
dist.barrier()
return local_images, local_pick_score, local_clip_score, local_image_reward
def save_images(images, prompts, save_path):
for i, image in enumerate(images):
image.save(os.path.join(save_path, f"{i:04d}.jpg"))
if prompts:
with open(os.path.join(save_path, "prompts.txt"), "w") as f:
f.writelines("\n".join(prompts))
def prepare_prompts(prompts_path, batch_size=1, max_count=None):
assert max_count % dist.get_world_size() == 0
df = pd.read_csv(prompts_path)
all_text = list(df["captions"])
if max_count is not None:
all_text = all_text[:max_count]
num_batches = (
(len(all_text) - 1) // (batch_size * dist.get_world_size()) + 1
) * dist.get_world_size()
all_batches = np.array_split(np.array(all_text), num_batches)
rank_batches = all_batches[dist.get_rank() :: dist.get_world_size()]
index_list = np.arange(len(all_text))
all_batches_index = np.array_split(index_list, num_batches)
rank_batches_index = all_batches_index[dist.get_rank() :: dist.get_world_size()]
return rank_batches, rank_batches_index, all_text
def to_PIL_image(image_tensor):
# [c, h, w] -> [h, w, c]
if isinstance(image_tensor, np.ndarray):
image_tensor = torch.tensor(image_tensor)
img = (image_tensor.permute(1, 2, 0) * 255).cpu().numpy()
return Image.fromarray(img.astype(np.uint8))