-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrainer.py
257 lines (230 loc) · 10.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision.utils import make_grid
import dist
from models import Switti, VQVAE
from models.pipeline import SwittiPipeline
from utils.amp_sc import AmpOptimizer
from utils.misc import TensorboardLogger
Ten = torch.Tensor
FTen = torch.Tensor
ITen = torch.LongTensor
BTen = torch.BoolTensor
EVAL_PROMPTS = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
"A sad puppy with large eyes",
"A girl with pale blue hair and a cami tank top",
"cute girl, Kyoto animation, 4k, high resolution",
"A person laying on a surfboard holding his dog",
"Green commercial building with refrigerator and refrigeration units outside",
"An airplane with two propellor engines flying in the sky",
"Four cows in a pen on a sunny day",
"Three dogs sleeping together on an unmade bed",
"a deer with bird feathers, highly detailed, full body",
"A city in 4-dimensional space-time",
"A black dog sitting on a wooden chair. A white cat with black ears is standing up with its paws on the chair.",
"a cat patting a crystal ball with the number 7 written on it in black marker",
"a barred owl peeking out from dense tree branches",
"a cat sitting on a stairway railing",
"a cat drinking a pint of beer",
"a bat landing on a baseball bat",
"a black dog sitting between a bush and a pair of green pants standing up with nobody inside them",
"a close-up of a blue dragonfly on a daffodil",
"A close-up of two beetles wearing karate uniforms and fighting, jumping over a waterfall."
]
class SwittiTrainer(object):
def __init__(
self,
dataloader,
device,
patch_nums: Tuple[int, ...],
resos: Tuple[int, ...],
pipe: SwittiPipeline,
vae_local: VQVAE,
switti_wo_ddp: Switti,
switti: DDP,
optimizer: AmpOptimizer,
label_smooth: float,
args=None,
):
super().__init__()
self.dataloader = iter(dataloader)
self.args = args
self.switti, self.vae_local, self.quantize_local = (
switti,
vae_local,
vae_local.quantize,
)
self.switti_wo_ddp: Switti = switti_wo_ddp # after torch.compile
self.optimizer = optimizer
self.pipe = pipe
self.switti_wo_ddp.rng = torch.Generator(device=device)
self.label_smooth = label_smooth
self.train_loss = nn.CrossEntropyLoss(
label_smoothing=label_smooth, reduction="none"
)
self.val_loss = nn.CrossEntropyLoss(label_smoothing=0.0, reduction="mean")
self.L = sum(pn * pn for pn in patch_nums)
self.last_l = patch_nums[-1] * patch_nums[-1]
self.loss_weight = torch.ones(1, self.L, device=device) / self.L
self.patch_nums, self.resos = patch_nums, resos
self.begin_ends = []
cur = 0
for pn in patch_nums:
self.begin_ends.append((cur, cur + pn * pn))
cur += pn * pn
self.device = device
self.grad_accum = args.grad_accum
self.embed_noise_std = args.embed_noise_std
def train_step(
self,
g_it: int,
tb_lg: TensorboardLogger
) -> Tuple[Optional[Union[Ten, float]], Optional[float]]:
# forward
self.switti.train()
for accum_iter in range(self.grad_accum):
image, prompt = next(self.dataloader)
inp_B3HW = image.to(self.device, non_blocking=True)
inp_B3HW = F.interpolate(
inp_B3HW, size=(self.resos[-1], self.resos[-1]), mode="bicubic",
)
B, V = inp_B3HW.size(0), self.vae_local.vocab_size
gt_idx_Bl: List[ITen] = self.vae_local.img_to_idxBl(
inp_B3HW, noise_std=self.embed_noise_std
)
gt_BL = torch.cat(gt_idx_Bl, dim=1)
x_BLCv_wo_first_l: Ten = self.quantize_local.idxBl_to_switti_input(gt_idx_Bl)
if self.args.uncond_proba > 0:
cond_uncond_choice = torch.bernoulli(
torch.full((B, ), self.args.uncond_proba)
)
for i_, p_ in enumerate(cond_uncond_choice):
if p_ == 1:
prompt[i_] = ""
(prompt_embeds,
pooled_prompt_embeds,
prompt_attn_bias,
) = self.pipe.encode_prompt(prompt, encode_null=False)
with self.optimizer.amp_ctx:
logits_BLV = self.switti(
x_BLCv_wo_first_l,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attn_bias=prompt_attn_bias,
)
loss = self.train_loss(logits_BLV.view(-1, V),
gt_BL.view(-1),
).view(B, -1)
loss = loss.mul(self.loss_weight).sum(dim=-1).mean()
# backward
is_stepping = (accum_iter + 1) == self.grad_accum
grad_norm, scale_log2 = self.optimizer.backward_clip_step(
loss=loss,
is_stepping=is_stepping,
)
# log to tensorboard
if g_it > 0 and g_it % self.args.log_iters == 0:
# recalculate logits in .eval() mode to log acc
self.switti.eval()
if self.args.use_gradient_checkpointing:
self.switti.disable_gradient_checkpointing()
with torch.no_grad(), self.optimizer.amp_ctx:
logits_BLV = self.switti(
x_BLCv_wo_first_l,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attn_bias=prompt_attn_bias,
)
# Compute cluster usage
pred_BL = logits_BLV.data.argmax(dim=-1)
prob_per_class_is_chosen = pred_BL.view(-1).bincount(minlength=V).float().cuda()
dist.allreduce(prob_per_class_is_chosen)
prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
cluster_usage = (
prob_per_class_is_chosen > 0.001 / V
).float().mean().item() * 100
logits_lg = dict()
kw = dict(z_voc_usage=cluster_usage, acc_total=0.0, L_total=0.0)
for si, (bg, ed) in enumerate(self.begin_ends):
pred = logits_BLV.data[:, bg:ed].reshape(-1, V)
tar = gt_BL[:, bg:ed].reshape(-1)
top5 = torch.topk(pred, 5, dim=-1)[1]
acc = (pred.argmax(dim=-1) == tar).float().mean().item() * 100
acc_top5 = torch.eq(tar[:, None], top5).any(dim=1).float().mean().item() * 100
ce = self.val_loss(pred, tar).item()
std = pred.std(dim=-1).mean().item()
norm = pred.norm(dim=-1).mean().item()
stats = torch.tensor([acc, acc_top5, ce, std, norm], device=dist.get_device())
dist.allreduce(stats)
stats /= dist.get_world_size()
acc, acc_top5, ce, std, norm = stats.tolist()
logits_lg[f"logits_std_{self.resos[si]}"] = std
logits_lg[f"logits_norm_{self.resos[si]}"] = norm
kw[f"acc_{self.resos[si]}"] = acc
kw[f"acc_top5_{self.resos[si]}"] = acc_top5
kw[f"L_{self.resos[si]}"] = ce
kw[f"acc_total"] += acc / len(self.begin_ends)
kw[f"L_total"] += ce / len(self.begin_ends)
if g_it % self.args.log_images_iters == 0:
with FSDP.summon_full_params(self.switti, writeback=False):
torch.cuda.empty_cache()
for cfg in [0, 6]:
subprompt = prompt[:16]
imgs = self.pipe(subprompt,
cfg=cfg,
top_k=self.args.top_k,
top_p=self.args.top_p,
return_pil=False,
)
imgs = make_grid(imgs, nrow=math.ceil(math.sqrt(len(imgs))))
tb_lg.log_image(
f"train_imgs_top_k={self.args.top_k}_top_p={self.args.top_p}_cfg={cfg}",
imgs,
step=g_it,
)
imgs = self.pipe(
EVAL_PROMPTS,
cfg=cfg,
top_k=self.args.top_k,
top_p=self.args.top_p,
return_pil=False,
)
imgs = make_grid(imgs, nrow=math.ceil(math.sqrt(len(imgs))))
tb_lg.log_image(
f"eval_imgs_topk={self.args.top_k}_top={self.args.top_p}_cfg={cfg}",
imgs,
step=g_it,
)
imgs = self.pipe(
EVAL_PROMPTS,
top_k=1,
cfg=cfg,
return_pil=False,
)
imgs = make_grid(imgs, nrow=math.ceil(math.sqrt(len(imgs))))
tb_lg.log_image(f"eval_imgs_topk_1_cfg{cfg}", imgs, step=g_it)
del imgs
if dist.is_master():
tb_lg.update(head="Logits_stats", **logits_lg, step=g_it)
tb_lg.update(head="AR_iter_loss", **kw, step=g_it)
print(f"LOGGING {g_it} FINISHED")
if self.args.use_gradient_checkpointing:
self.switti.enable_gradient_checkpointing()
self.switti.train()
dist.barrier()
return grad_norm.item(), scale_log2
def get_config(self):
return {
"patch_nums": self.patch_nums,
"resos": self.resos,
"label_smooth": self.label_smooth,
}