-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota_v5.py
68 lines (54 loc) · 1.71 KB
/
cfgs_res50_dota_v5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0"
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 27000
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
# model
# backbone
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 1.0 / 5.0
REG_LOSS_MODE = 1 # IoU-Smooth L1
VERSION = 'RetinaNet_DOTA_1x_20201225'
"""
RetinaNet-H + IoU-Smooth L1
FLOPs: 484911740; Trainable params: 33002916
This is your result for task 1:
mAP: 0.6699231893137383
ap of each class:
plane:0.8833785173522034,
baseball-diamond:0.7627482529936743,
bridge:0.44320593902405797,
ground-track-field:0.6785841556477691,
small-vehicle:0.6303299319074853,
large-vehicle:0.5124927246071527,
ship:0.7277748791449373,
tennis-court:0.8980387801428189,
basketball-court:0.79974279949969,
storage-tank:0.7797862635611005,
soccer-ball-field:0.5409846307060925,
roundabout:0.632179992142947,
harbor:0.5621019025063557,
swimming-pool:0.6734955940136754,
helicopter:0.5240034764561138
The submitted information is :
Description: RetinaNet_DOTA_1x_20201225_45.9w
Username: SJTU-Det
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""