-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathcfgs_res50_dota2.0_r3det_bcd_v2.py
81 lines (65 loc) · 2.11 KB
/
cfgs_res50_dota2.0_r3det_bcd_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1 # r3det only support 1
GPU_GROUP = '0,1,2'
NUM_GPU = len(GPU_GROUP.strip().split(','))
LR = 1e-3
SAVE_WEIGHTS_INTE = 40000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA2.0'
CLASS_NUM = 18
# model
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
NUM_REFINE_STAGE = 1
# sample
REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7]
REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6]
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 2.0
BCD_TAU = 2.0
BCD_FUNC = 1 # 0: sqrt 1: log
VERSION = 'RetinaNet_DOTA2.0_R3Det_BCD_2x_20210810'
"""
r3det + bcd
FLOPs: 1037518071; Trainable params: 37921786
This is your evaluation result for task 1:
mAP: 0.497138597688435
ap of each class:
plane:0.7907544633930063,
baseball-diamond:0.4394392922362394,
bridge:0.3763375229802902,
ground-track-field:0.5997888100954012,
small-vehicle:0.43404846038928885,
large-vehicle:0.536744163312537,
ship:0.6055920751310522,
tennis-court:0.7766541023795874,
basketball-court:0.582857433858447,
storage-tank:0.5778112278875461,
soccer-ball-field:0.4450066921350499,
roundabout:0.5013528371851708,
harbor:0.45911705094299177,
swimming-pool:0.5564854560398057,
helicopter:0.5055087958993411,
container-crane:0.21503163546446838,
airport:0.41592776348258886,
helipad:0.13003697557901722
The submitted information is :
Description: RetinaNet_DOTA2.0_R3Det_BCD_2x_20210810_104w
Username: sjtu-deter
Institute: SJTU
Emailadress: [email protected]
TeamMembers: yangxue
"""