-
Notifications
You must be signed in to change notification settings - Fork 438
/
Copy pathbow.py
122 lines (96 loc) · 2.94 KB
/
bow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import random
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from utils import loadWord2Vec
from math import log
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn import svm
from sklearn.svm import LinearSVC
# build corpus
dataset = '20ng'
# shulffing
doc_name_list = []
doc_train_list = []
doc_test_list = []
f = open('data/' + dataset + '.txt', 'r')
for line in f.readlines():
doc_name_list.append(line.strip())
temp = line.split("\t")
if temp[1].find('test') != -1:
doc_test_list.append(line.strip())
elif temp[1].find('train') != -1:
doc_train_list.append(line.strip())
f.close()
doc_content_list = []
f = open('data/corpus/' + dataset + '.clean.txt', 'r')
for line in f.readlines():
doc_content_list.append(line.strip())
f.close()
train_ids = []
for train_name in doc_train_list:
train_id = doc_name_list.index(train_name)
train_ids.append(train_id)
print(train_ids)
random.shuffle(train_ids)
# partial labeled data
f = open('data/' + dataset + '.train.index', 'r')
lines = f.readlines()
f.close()
train_ids = [int(x.strip()) for x in lines]
#train_ids = train_ids[:int(0.2 * len(train_ids))]
test_ids = []
for test_name in doc_test_list:
test_id = doc_name_list.index(test_name)
test_ids.append(test_id)
print(test_ids)
random.shuffle(test_ids)
ids = train_ids + test_ids
print(ids)
print(len(ids))
train_size = len(train_ids)
val_size = int(0.1 * train_size)
real_train_size = train_size - val_size
shuffle_doc_name_list = []
shuffle_doc_words_list = []
for id in ids:
shuffle_doc_name_list.append(doc_name_list[int(id)])
shuffle_doc_words_list.append(doc_content_list[int(id)])
tfidf_vec = TfidfVectorizer() #max_features=50000
tfidf_matrix = tfidf_vec.fit_transform(shuffle_doc_words_list)
print(tfidf_matrix)
#tfidf_matrix_array = tfidf_matrix.toarray()
# BOW TFIDF + LR
#train_x = []
train_y = []
#test_x = []
test_y = []
for i in range(len(shuffle_doc_words_list)):
doc_words = shuffle_doc_words_list[i]
words = doc_words.split(' ')
doc_meta = shuffle_doc_name_list[i]
temp = doc_meta.split('\t')
label = temp[2]
if i < train_size:
#train_x.append(tfidf_matrix_array[i])
train_y.append(label)
else:
#test_x.append(tfidf_matrix_array[i])
test_y.append(label)
#clf = svm.SVC(decision_function_shape='ovr', class_weight="balanced",kernel='linear')
#clf = LinearSVC(random_state=0)
clf = LogisticRegression(random_state=1)
clf.fit(tfidf_matrix[:train_size], train_y)
predict_y = clf.predict(tfidf_matrix[train_size:])
correct_count = 0
for i in range(len(test_y)):
if predict_y[i] == test_y[i]:
correct_count += 1
accuracy = correct_count * 1.0 / len(test_y)
print(dataset, accuracy)
print("Precision, Recall and F1-Score...")
print(metrics.classification_report(test_y, predict_y, digits=4))