-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdecoder.py
353 lines (293 loc) · 9.48 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from struct import unpack
import math
marker_mapping = {
0xFFD8: "Start of Image",
0xFFE0: "Application Default Header",
0xFFDB: "Quantization Table",
0xFFC0: "Start of Frame",
0xFFC4: "Huffman Table",
0xFFDA: "Start of Scan",
0xFFD9: "End of Image",
}
def PrintMatrix(m):
"""
A convenience function for printing matrices
"""
for j in range(8):
print("|", end="")
for i in range(8):
print("%d |" % m[i + j * 8], end="\t")
print()
print()
def Clamp(col):
"""
Makes sure col is between 0 and 255.
"""
col = 255 if col > 255 else col
col = 0 if col < 0 else col
return int(col)
def ColorConversion(Y, Cr, Cb):
"""
Converts Y, Cr and Cb to RGB color space
"""
R = Cr * (2 - 2 * 0.299) + Y
B = Cb * (2 - 2 * 0.114) + Y
G = (Y - 0.114 * B - 0.299 * R) / 0.587
return (Clamp(R + 128), Clamp(G + 128), Clamp(B + 128))
def DrawMatrix(x, y, matL, matCb, matCr):
"""
Loops over a single 8x8 MCU and draws it on Tkinter canvas
"""
for yy in range(8):
for xx in range(8):
c = "#%02x%02x%02x" % ColorConversion(
matL[yy][xx], matCb[yy][xx], matCr[yy][xx]
)
x1, y1 = (x * 8 + xx) * 2, (y * 8 + yy) * 2
x2, y2 = (x * 8 + (xx + 1)) * 2, (y * 8 + (yy + 1)) * 2
w.create_rectangle(x1, y1, x2, y2, fill=c, outline=c)
def RemoveFF00(data):
"""
Removes 0x00 after 0xff in the image scan section of JPEG
"""
datapro = []
i = 0
while True:
b, bnext = unpack("BB", data[i : i + 2])
if b == 0xFF:
if bnext != 0:
break
datapro.append(data[i])
i += 2
else:
datapro.append(data[i])
i += 1
return datapro, i
def GetArray(type, l, length):
"""
A convenience function for unpacking an array from bitstream
"""
s = ""
for i in range(length):
s = s + type
return list(unpack(s, l[:length]))
def DecodeNumber(code, bits):
l = 2 ** (code - 1)
if bits >= l:
return bits
else:
return bits - (2 * l - 1)
class IDCT:
"""
An inverse Discrete Cosine Transformation Class
"""
def __init__(self):
self.base = [0] * 64
self.zigzag = [
[0, 1, 5, 6, 14, 15, 27, 28],
[2, 4, 7, 13, 16, 26, 29, 42],
[3, 8, 12, 17, 25, 30, 41, 43],
[9, 11, 18, 24, 31, 40, 44, 53],
[10, 19, 23, 32, 39, 45, 52, 54],
[20, 22, 33, 38, 46, 51, 55, 60],
[21, 34, 37, 47, 50, 56, 59, 61],
[35, 36, 48, 49, 57, 58, 62, 63],
]
self.idct_precision = 8
self.idct_table = [
[
(self.NormCoeff(u) * math.cos(((2.0 * x + 1.0) * u * math.pi) / 16.0))
for x in range(self.idct_precision)
]
for u in range(self.idct_precision)
]
def NormCoeff(self, n):
if n == 0:
return 1.0 / math.sqrt(2.0)
else:
return 1.0
def rearrange_using_zigzag(self):
for x in range(8):
for y in range(8):
self.zigzag[x][y] = self.base[self.zigzag[x][y]]
return self.zigzag
def perform_IDCT(self):
out = [list(range(8)) for i in range(8)]
for x in range(8):
for y in range(8):
local_sum = 0
for u in range(self.idct_precision):
for v in range(self.idct_precision):
local_sum += (
self.zigzag[v][u]
* self.idct_table[u][x]
* self.idct_table[v][y]
)
out[y][x] = local_sum // 4
self.base = out
class HuffmanTable:
"""
A Huffman Table class
"""
def __init__(self):
self.root = []
self.elements = []
def BitsFromLengths(self, root, element, pos):
if isinstance(root, list):
if pos == 0:
if len(root) < 2:
root.append(element)
return True
return False
for i in [0, 1]:
if len(root) == i:
root.append([])
if self.BitsFromLengths(root[i], element, pos - 1) == True:
return True
return False
def GetHuffmanBits(self, lengths, elements):
self.elements = elements
ii = 0
for i in range(len(lengths)):
for j in range(lengths[i]):
self.BitsFromLengths(self.root, elements[ii], i)
ii += 1
def Find(self, st):
r = self.root
while isinstance(r, list):
r = r[st.GetBit()]
return r
def GetCode(self, st):
while True:
res = self.Find(st)
if res == 0:
return 0
elif res != -1:
return res
class Stream:
"""
A bit stream class with convenience methods
"""
def __init__(self, data):
self.data = data
self.pos = 0
def GetBit(self):
b = self.data[self.pos >> 3]
s = 7 - (self.pos & 0x7)
self.pos += 1
return (b >> s) & 1
def GetBitN(self, l):
val = 0
for _ in range(l):
val = val * 2 + self.GetBit()
return val
def len(self):
return len(self.data)
class JPEG:
"""
JPEG class for decoding a baseline encoded JPEG image
"""
def __init__(self, image_file):
self.huffman_tables = {}
self.quant = {}
self.quantMapping = []
with open(image_file, "rb") as f:
self.img_data = f.read()
def DefineQuantizationTables(self, data):
(hdr,) = unpack("B", data[0:1])
self.quant[hdr] = GetArray("B", data[1 : 1 + 64], 64)
data = data[65:]
def BuildMatrix(self, st, idx, quant, olddccoeff):
i = IDCT()
code = self.huffman_tables[0 + idx].GetCode(st)
bits = st.GetBitN(code)
dccoeff = DecodeNumber(code, bits) + olddccoeff
i.base[0] = (dccoeff) * quant[0]
l = 1
while l < 64:
code = self.huffman_tables[16 + idx].GetCode(st)
if code == 0:
break
# The first part of the AC key_len
# is the number of leading zeros
if code > 15:
l += code >> 4
code = code & 0x0F
bits = st.GetBitN(code)
if l < 64:
coeff = DecodeNumber(code, bits)
i.base[l] = coeff * quant[l]
l += 1
i.rearrange_using_zigzag()
i.perform_IDCT()
return i, dccoeff
def StartOfScan(self, data, hdrlen):
data, lenchunk = RemoveFF00(data[hdrlen:])
st = Stream(data)
oldlumdccoeff, oldCbdccoeff, oldCrdccoeff = 0, 0, 0
for y in range(self.height // 8):
for x in range(self.width // 8):
matL, oldlumdccoeff = self.BuildMatrix(
st, 0, self.quant[self.quantMapping[0]], oldlumdccoeff
)
matCr, oldCrdccoeff = self.BuildMatrix(
st, 1, self.quant[self.quantMapping[1]], oldCrdccoeff
)
matCb, oldCbdccoeff = self.BuildMatrix(
st, 1, self.quant[self.quantMapping[2]], oldCbdccoeff
)
DrawMatrix(x, y, matL.base, matCb.base, matCr.base)
return lenchunk + hdrlen
def BaselineDCT(self, data):
hdr, self.height, self.width, components = unpack(">BHHB", data[0:6])
print("size %ix%i" % (self.width, self.height))
for i in range(components):
id, samp, QtbId = unpack("BBB", data[6 + i * 3 : 9 + i * 3])
self.quantMapping.append(QtbId)
def decodeHuffman(self, data):
offset = 0
(header,) = unpack("B", data[offset : offset + 1])
print(header, header & 0x0F, (header >> 4) & 0x0F)
offset += 1
lengths = GetArray("B", data[offset : offset + 16], 16)
offset += 16
elements = []
for i in lengths:
elements += GetArray("B", data[offset : offset + i], i)
offset += i
hf = HuffmanTable()
hf.GetHuffmanBits(lengths, elements)
self.huffman_tables[header] = hf
data = data[offset:]
def decode(self):
data = self.img_data
while True:
(marker,) = unpack(">H", data[0:2])
print(marker_mapping.get(marker))
if marker == 0xFFD8:
data = data[2:]
elif marker == 0xFFD9:
return
else:
(len_chunk,) = unpack(">H", data[2:4])
len_chunk += 2
chunk = data[4:len_chunk]
if marker == 0xFFC4:
self.decodeHuffman(chunk)
elif marker == 0xFFDB:
self.DefineQuantizationTables(chunk)
elif marker == 0xFFC0:
self.BaselineDCT(chunk)
elif marker == 0xFFDA:
len_chunk = self.StartOfScan(data, len_chunk)
data = data[len_chunk:]
if len(data) == 0:
break
if __name__ == "__main__":
from tkinter import Tk, Canvas, mainloop
master = Tk()
w = Canvas(master, width=1600, height=600)
w.pack()
img = JPEG("profile.jpg")
img.decode()
mainloop()