-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathconv_codes_benchmark.py
130 lines (95 loc) · 4.56 KB
/
conv_codes_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
__author__ = 'yihanjiang'
'''
Evaluate convolutional code benchmark.
'''
from utils import corrupt_signal, get_test_sigmas
import sys
import numpy as np
import time
import commpy.channelcoding.convcode as cc
from commpy.utilities import hamming_dist
import multiprocessing as mp
def get_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-num_block', type=int, default=100)
parser.add_argument('-block_len', type=int, default=100)
parser.add_argument('-code_rate', type=int, default=2)
parser.add_argument('-enc1', type=int, default=7)
parser.add_argument('-enc2', type=int, default=5)
parser.add_argument('-enc3', type=int, default=1)
parser.add_argument('-feedback', type=int, default=7)
parser.add_argument('-num_cpu', type=int, default=4)
parser.add_argument('-snr_test_start', type=float, default=-1.0)
parser.add_argument('-snr_test_end', type=float, default=8.0)
parser.add_argument('-snr_points', type=int, default=10)
parser.add_argument('-noise_type', choices = ['awgn', 't-dist','hyeji_bursty'], default='awgn')
parser.add_argument('-radar_power', type=float, default=20.0)
parser.add_argument('-radar_prob', type=float, default=0.05)
parser.add_argument('-radar_denoise_thd', type=float, default=10.0)
parser.add_argument('-v', type=int, default=3)
parser.add_argument('-id', type=str, default=str(np.random.random())[2:8])
args = parser.parse_args()
print args
print '[ID]', args.id
return args
if __name__ == '__main__':
args = get_args()
##########################################
# Setting Up Codec
##########################################
M = np.array([2]) # Number of delay elements in the convolutional encoder
if args.code_rate == 2:
generator_matrix = np.array([[args.enc1, args.enc2]])
elif args.code_rate == 3:
generator_matrix = np.array([[args.enc1, args.enc2, args.enc3]])
else:
print 'Not supported!'
sys.exit()
feedback = args.feedback
print '[testing] Convolutional Code Encoder: G: ', generator_matrix,'Feedback: ', feedback, 'M: ', M
trellis1 = cc.Trellis(M, generator_matrix,feedback=feedback) # Create trellis data structure
SNRS, test_sigmas = get_test_sigmas(args.snr_test_start, args.snr_test_end, args.snr_points)
tic = time.time()
tb_depth = 15
def turbo_compute((idx, x)):
'''
Compute Turbo Decoding in 1 iterations for one SNR point.
'''
np.random.seed()
message_bits = np.random.randint(0, 2, args.block_len)
coded_bits = cc.conv_encode(message_bits, trellis1)
received = corrupt_signal(coded_bits, noise_type =args.noise_type, sigma = test_sigmas[idx],
vv =args.v, radar_power = args.radar_power, radar_prob = args.radar_prob,
denoise_thd = args.radar_denoise_thd)
# make fair comparison between (100, 204) convolutional code and (100,200) RNN decoder, set the additional bit to 0
received[-2*int(M):] = 0.0
decoded_bits = cc.viterbi_decode(received.astype(float), trellis1, tb_depth, decoding_type='unquantized')
decoded_bits = decoded_bits[:-int(M)]
num_bit_errors = hamming_dist(message_bits, decoded_bits)
return num_bit_errors
commpy_res_ber = []
commpy_res_bler= []
nb_errors = np.zeros(test_sigmas.shape)
map_nb_errors = np.zeros(test_sigmas.shape)
nb_block_no_errors = np.zeros(test_sigmas.shape)
for idx in range(len(test_sigmas)):
start_time = time.time()
pool = mp.Pool(processes=args.num_cpu)
results = pool.map(turbo_compute, [(idx,x) for x in range(args.num_block)])
for result in results:
if result == 0:
nb_block_no_errors[idx] = nb_block_no_errors[idx]+1
nb_errors[idx]+= sum(results)
print '[testing]SNR: ' , SNRS[idx]
print '[testing]BER: ', sum(results)/float(args.block_len*args.num_block)
print '[testing]BLER: ', 1.0 - nb_block_no_errors[idx]/args.num_block
commpy_res_ber.append(sum(results)/float(args.block_len*args.num_block))
commpy_res_bler.append(1.0 - nb_block_no_errors[idx]/args.num_block)
end_time = time.time()
print '[testing] This SNR runnig time is', str(end_time-start_time)
print '[Result]SNR: ', SNRS
print '[Result]BER', commpy_res_ber
print '[Result]BLER', commpy_res_bler
toc = time.time()
print '[Result]Total Running time:', toc-tic