-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathdecoder.py
executable file
·97 lines (83 loc) · 3.83 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch.nn.functional as F
import torch
class DecDecoder(object):
def __init__(self, K, conf_thresh, num_classes):
self.K = K
self.conf_thresh = conf_thresh
self.num_classes = num_classes
def _topk(self, scores):
batch, cat, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), self.K)
topk_inds = topk_inds % (height * width)
topk_ys = (topk_inds // width).int().float()
topk_xs = (topk_inds % width).int().float()
topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), self.K)
topk_clses = (topk_ind // self.K).int()
topk_inds = self._gather_feat( topk_inds.view(batch, -1, 1), topk_ind).view(batch, self.K)
topk_ys = self._gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, self.K)
topk_xs = self._gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, self.K)
return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
def _nms(self, heat, kernel=3):
hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=(kernel - 1) // 2)
keep = (hmax == heat).float()
return heat * keep
def _gather_feat(self, feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(self, feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = self._gather_feat(feat, ind)
return feat
def ctdet_decode(self, pr_decs):
heat = pr_decs['hm']
wh = pr_decs['wh']
reg = pr_decs['reg']
cls_theta = pr_decs['cls_theta']
batch, c, height, width = heat.size()
heat = self._nms(heat)
scores, inds, clses, ys, xs = self._topk(heat)
reg = self._tranpose_and_gather_feat(reg, inds)
reg = reg.view(batch, self.K, 2)
xs = xs.view(batch, self.K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, self.K, 1) + reg[:, :, 1:2]
clses = clses.view(batch, self.K, 1).float()
scores = scores.view(batch, self.K, 1)
wh = self._tranpose_and_gather_feat(wh, inds)
wh = wh.view(batch, self.K, 10)
# add
cls_theta = self._tranpose_and_gather_feat(cls_theta, inds)
cls_theta = cls_theta.view(batch, self.K, 1)
mask = (cls_theta>0.8).float().view(batch, self.K, 1)
#
tt_x = (xs+wh[..., 0:1])*mask + (xs)*(1.-mask)
tt_y = (ys+wh[..., 1:2])*mask + (ys-wh[..., 9:10]/2)*(1.-mask)
rr_x = (xs+wh[..., 2:3])*mask + (xs+wh[..., 8:9]/2)*(1.-mask)
rr_y = (ys+wh[..., 3:4])*mask + (ys)*(1.-mask)
bb_x = (xs+wh[..., 4:5])*mask + (xs)*(1.-mask)
bb_y = (ys+wh[..., 5:6])*mask + (ys+wh[..., 9:10]/2)*(1.-mask)
ll_x = (xs+wh[..., 6:7])*mask + (xs-wh[..., 8:9]/2)*(1.-mask)
ll_y = (ys+wh[..., 7:8])*mask + (ys)*(1.-mask)
#
detections = torch.cat([xs, # cen_x
ys, # cen_y
tt_x,
tt_y,
rr_x,
rr_y,
bb_x,
bb_y,
ll_x,
ll_y,
scores,
clses],
dim=2)
index = (scores>self.conf_thresh).squeeze(0).squeeze(1)
detections = detections[:,index,:]
return detections.data.cpu().numpy()