-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdistilbert.h
295 lines (216 loc) · 9.53 KB
/
distilbert.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#ifndef DISTILBERT_H
#define DISTILBERT_H
#include "bertbase.h"
#include "bertbasemodel.h"
#include <cstring>
#include <cmath>
#include <ggml.h>
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <vector>
#include <map>
#include <string>
namespace bert {
class DistilBertEmbedding {
public:
DistilBertEmbedding() {}
ggml_tensor *word_embeddings;
ggml_tensor *position_embeddings;
ggml_tensor *ln_e_w;
ggml_tensor *ln_e_b;
ggml_tensor* forward(BertHiParams *hparams, ggml_context *ctx0, bert_vocab_id *tokens, int N) {
BERT_ASSERT(word_embeddings != NULL);
BERT_ASSERT(position_embeddings != NULL);
BERT_ASSERT(ln_e_w != NULL);
BERT_ASSERT(ln_e_b != NULL);
float norm_eps = hparams->f_norm_eps;
struct ggml_tensor *token_layer = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(token_layer->data, tokens, N * ggml_element_size(token_layer));
//std::cout<<to_string(token_layer, true)<<std::endl;
struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; i++) {
ggml_set_i32_1d(positions, i, i);
}
struct ggml_tensor *inpL = ggml_get_rows(ctx0, word_embeddings, token_layer);
printf("\n word_embeddings \n");
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, position_embeddings, positions), inpL);
printf("\n position_embeddings \n");
// embd norm
{
inpL = ggml_norm(ctx0, inpL, norm_eps);
printf("\n embd norm begin : \n");
inpL = ggml_mul(ctx0, inpL, ln_e_w);
print_ggml_tensor("norm mul after inpL ", inpL);
inpL = ggml_add(ctx0, inpL, ln_e_b);
print_ggml_tensor("norm add after inpL ", inpL);
}
return inpL;
}
};
class DistilBertTransformer {
public:
DistilBertTransformer() {}
// normalization
ggml_tensor *ln_att_w;
ggml_tensor *ln_att_b;
ggml_tensor *q_w;
ggml_tensor *q_b;
ggml_tensor *k_w;
ggml_tensor *k_b;
ggml_tensor *v_w;
ggml_tensor *v_b;
ggml_tensor *o_w;
ggml_tensor *o_b;
// ffn
ggml_tensor *ff_i_w;
ggml_tensor *ff_i_b;
ggml_tensor *ff_o_w;
ggml_tensor *ff_o_b;
ggml_tensor *ln_out_w;
ggml_tensor *ln_out_b;
ggml_tensor* forward(BertHiParams *hparams, ggml_context *ctx0, ggml_tensor *hide_state, int N) {
BERT_ASSERT(ln_att_w != NULL);
BERT_ASSERT(ln_att_b != NULL);
const int n_embd = hparams->n_embd;
const int n_layer = hparams->n_layers;
const int N_MAX = hparams->max_position_embeddings;
const int n_head = hparams->n_heads;
const int n_labels = hparams->n_labels;
const int d_head = n_embd / n_head;
const float norm_eps = hparams->f_norm_eps;
struct ggml_tensor *inpL = hide_state;
struct ggml_tensor *cur = inpL;
// a layer
// self-attention
{
struct ggml_tensor *Qcur = cur;
struct ggml_tensor *qLin = ggml_add(ctx0, ggml_mul_mat(ctx0, q_w, Qcur), q_b);
print_ggml_tensor("self-attention qcur liner ", qLin);
Qcur = ggml_reshape_3d(ctx0, qLin, d_head, n_head, N);
print_ggml_tensor("self-attention qcur rehsape ", Qcur);
//q = soft_max(q / sqrt(head width))
Qcur = ggml_scale(ctx0, Qcur, ggml_new_f32(ctx0, 1.0f / sqrt((float)d_head)));
print_ggml_tensor("self-attention ScaleQ ", Qcur);
struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
print_ggml_tensor("self-attention qcur permute ", Q);
struct ggml_tensor *Kcur = cur;
struct ggml_tensor *klin = ggml_add(ctx0, ggml_mul_mat(ctx0, k_w, Kcur), k_b);
print_ggml_tensor("self-attention Kcur liner ", klin);
Kcur = ggml_reshape_3d(ctx0, klin, d_head, n_head, N);
print_ggml_tensor("self-attention Kcur rehsape ", Kcur);
struct ggml_tensor *K = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
print_ggml_tensor("self-attention Kcur permute ", K);
struct ggml_tensor *Vcur = cur;
struct ggml_tensor *vlin = ggml_add(ctx0, ggml_mul_mat(ctx0, v_w, Vcur), v_b);
print_ggml_tensor("self-attention Vcur lin ", vlin);
Vcur = ggml_reshape_3d(ctx0, vlin, d_head, n_head, N);
print_ggml_tensor("self-attention Vcur rehsape ", Vcur);
struct ggml_tensor *V = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
print_ggml_tensor("self-attention Vcur permute ", V);
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
print_ggml_tensor("self-attention KQ ", KQ);
KQ = ggml_soft_max(ctx0, KQ);
print_ggml_tensor("self-attention KQ soft_max ", KQ);
V = ggml_cont(ctx0, ggml_transpose(ctx0, V));
print_ggml_tensor("self-attention transpose V ", V);
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
print_ggml_tensor("self-attention KQV ", KQV);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
print_ggml_tensor("self-attention KQV permute ", KQV);
//cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
//print_ggml_tensor("self-attention KQV permute after cpy ", cur);
cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV), n_embd, N);
print_ggml_tensor("self-attention KQV permute after cpy ", cur);
}
// attention output
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, o_w, cur), o_b);
print_ggml_tensor("attention output ", cur);
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
print_ggml_tensor("attention output add org ", cur);
// attention norm
{
cur = ggml_norm(ctx0, cur, norm_eps);
print_ggml_tensor("sa_layer_norm norm ", cur);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, ln_att_w), ln_att_b);
print_ggml_tensor("sa_layer_norm norm liner ", cur);
}
struct ggml_tensor *att_output = cur;
// intermediate_output = self.intermediate(attention_output)
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, ff_i_w, cur), ff_i_b);
print_ggml_tensor("attention ffn in liner ", cur);
cur = ggml_gelu(ctx0, cur);
print_ggml_tensor("attention ffn gelu ", cur);
// layer_output = self.output(intermediate_output, attention_output)
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, ff_o_w, cur), ff_o_b);
print_ggml_tensor("attention ffn out liner ", cur);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, att_output, cur);
print_ggml_tensor("attention ffn+before cur ", cur);
// output norm
{
cur = ggml_norm(ctx0, cur, norm_eps);
print_ggml_tensor("output_layer_norm norm ", cur);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, ln_out_w), ln_out_b);
print_ggml_tensor("output_layer_norm norm liner ", cur);
}
return cur;
}
};
class DistilBertBert {
public:
DistilBertBert() {}
DistilBertEmbedding embeddings;
std::vector<DistilBertTransformer> layers;
ggml_tensor* forward(BertHiParams *hparams, ggml_context *ctx0, bert_vocab_id *tokens, int N) {
// Embeddings. word_embeddings + position_embeddings
struct ggml_tensor *inpL = embeddings.forward(hparams, ctx0, tokens, N);
// layers
for (int il = 0; il < layers.size(); il++) {
inpL = layers[il].forward(hparams, ctx0, inpL, N);
}
return inpL;
}
};
class DistilBertClassifierModel : public AbstractBertModel {
public:
// embeddings weights
// transformer attentions
BertEncoderBert bert;
ggml_tensor *pre_cls_w;
ggml_tensor *pre_cls_b;
ggml_tensor *cls_w;
ggml_tensor *cls_b;
ggml_context *_ctx = NULL;
std::map<std::string, ggml_tensor *> tensors;
void set_ggml_context(ggml_context *ctx_) { _ctx = ctx_; }
ggml_context* get_ggml_context() { return _ctx; }
ggml_tensor* forward(BertHiParams *hparams, ggml_context *ctx0, bert_vocab_id *tokens, int N) {
BERT_ASSERT(pre_cls_w != NULL);
BERT_ASSERT(pre_cls_b != NULL);
BERT_ASSERT(cls_w != NULL);
BERT_ASSERT(cls_b != NULL);
struct ggml_tensor *inpL = bert.forward(hparams, ctx0, tokens, N);
struct ggml_tensor *cur = ggml_view_2d(ctx0, inpL, inpL->ne[0], inpL->ne[2], inpL->ne[1]*inpL->ne[0], 0);
print_ggml_tensor("outitem ggml_view_2d 1 ", cur);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, pre_cls_w, cur), pre_cls_b);
print_ggml_tensor("pre_classifier liner ", cur);
cur = ggml_relu(ctx0, cur);
print_ggml_tensor("pre_classifier relu ", cur);
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, cls_w, cur), cls_b);
print_ggml_tensor("classifier liner ", cur);
cur = ggml_soft_max(ctx0, cur);
print_ggml_tensor("classifier softmax ", cur);
return cur;
}
~DistilBertClassifierModel() {
if (_ctx != NULL) {
ggml_free(_ctx);
_ctx = NULL;
}
}
};
struct BertBaseCtx * distilbert_load_from_file(const char * fname);
}
#endif // DISTILBERT_H