-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
25 lines (23 loc) · 877 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
from torch import nn
class simNN(nn.Module):
def __init__(self,inchannel,outchannel):
super(simNN, self).__init__()
hiddensize1 = 1024
hiddensize2 = 512
hiddensize3 = 256
hiddensize4 = 128
self.linear1 = nn.Linear(inchannel, hiddensize1)
self.linear2 = nn.Linear(hiddensize1,hiddensize2)
self.linear3 = nn.Linear(hiddensize2,hiddensize3)
self.linear4 = nn.Linear(hiddensize3,outchannel)
# self.linear5 = nn.Linear(hiddensize4, outchannel)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(x.size(0), -1) # batch, 3*32*32
out = self.relu(self.linear1(x))
# torch.nn.Dropout(0.5)
out = self.relu(self.linear2(out))
out = self.relu(self.linear3(out))
out = self.linear4(out) # batch, outchannel
return out