-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript.py
523 lines (424 loc) · 18.1 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os, requests, datetime
from openai import OpenAI, AssistantEventHandler
from db_handler import GenericDBHandler, Conversation
def timestamp_to_datetime(timestamp):
return datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S')
# Code interpreter
# Input
# $0.03 / session
# File Search
# Input
# $0.10 / GB of vector-storage per day (1 GB free)
# Step 1: Create a new Assistant with File Search Enabled
class GPTWrapper:
def __init__(self, api_key=None, db_url='sqlite:///conv.db'):
super().__init__()
self._client = None
# Initialize OpenAI client
self._is_available = True if api_key else False
if api_key and self._is_available:
self.set_api(api_key)
self._db_handler = ''
self.init_db(db_url)
def is_available(self):
return self._is_available
def set_api(self, api_key):
self._api_key = api_key
self._client = OpenAI(api_key=api_key)
os.environ['OPENAI_API_KEY'] = api_key
def request_and_set_api(self, api_key):
try:
response = requests.get('https://api.openai.com/v1/models', headers={'Authorization': f'Bearer {api_key}'})
self._is_available = response.status_code == 200
if self._is_available:
self.set_api(api_key)
return self._is_available
except Exception as e:
print(e)
return False
def get_message_obj(self, role, content):
return {"role": role, "content": content}
def init_db(self, db_url):
self._db_handler = GenericDBHandler(db_url)
def get_conversations(self):
return self._db_handler.get_conversations()
def append(self, message):
self._db_handler.append(message)
class GPTAssistantWrapper(GPTWrapper):
def __init__(self, api_key=None, db_url='sqlite:///conv.db'):
super().__init__(api_key=api_key, db_url=db_url)
self.__assistant_id = None
self.__thread_id = None
self.__assistants = []
def get_assistants(self, order='desc', limit=None):
if self._client is None:
return None
assistants = self._client.beta.assistants.list(order=order, limit=limit)
assistants = [{
"assistant_id": assistant.id,
"name": assistant.name,
"instructions": assistant.instructions,
"tools": assistant.tools,
"model": assistant.model,
"thread": '',
} for assistant in assistants]
self.__assistants = assistants
return self.__assistants
def set_current_assistant(self, assistant_id):
self.__assistant_id = assistant_id
self.__set_current_thread()
def __set_current_thread(self):
if self.__assistant_id is None:
raise ValueError('Assistant is not initialized yet')
else:
# thread = self._db_handler.query_table(Thread, {"name": name, "assistant_id": self.__assistant_id})
# if thread:
# print(f"Thread {name} already exists")
# self.__thread_id = thread[0].thread_id
# else:
thread = self._client.beta.threads.create()
self.__thread_id = thread.id
for assistant in self.__assistants:
if assistant["assistant_id"] == self.__assistant_id:
assistant["thread"] = self.__thread_id
break
# self._db_handler.append(Thread, thread_obj)
def send_message(self, message_str, instructions=''):
user_obj = self.get_message_obj("user", message_str)
self._db_handler.append(Conversation, user_obj)
self._client.beta.threads.messages.create(
thread_id=self.__thread_id,
role="user",
content=message_str
)
run = self._client.beta.threads.runs.create(
thread_id=self.__thread_id,
assistant_id=self.__assistant_id,
instructions=instructions,
)
response = self._client.beta.threads.runs.retrieve(
thread_id=self.__thread_id,
run_id=run.id
)
while response.status == "in_progress" or response.status == "queued":
response = self._client.beta.threads.runs.retrieve(thread_id=self.__thread_id, run_id=run.id)
response = self._client.beta.threads.messages.list(thread_id=self.__thread_id)
response = response.dict()["data"][0]
response = self.get_message_obj(response['role'], response['content'][0]['text']['value'])
self._db_handler.append(Conversation, response)
return response
class GPTAssistantV2Wrapper(GPTAssistantWrapper):
"""
A wrapper class for managing the OpenAI Assistant V2 with enhanced File Search capabilities.
"""
def __init__(self, api_key=None, db_url='sqlite:///conv.db'):
"""
Initializes the GPTAssistantV2Wrapper.
:param api_key: API key for authentication.
:param db_url: Database URL for storing conversation data.
"""
super().__init__(api_key=api_key, db_url=db_url)
self.__assistant_id = None
self.__thread_id = None
self.__assistants = []
def __form_assistant_obj(self, assistant):
"""
Forms a dictionary object representing an assistant.
:param assistant: Assistant object from the API.
:return: Dictionary representing the assistant.
"""
obj = {
"assistant_id": assistant.id,
"name": assistant.name,
"instructions": assistant.instructions,
"tools": assistant.tools,
"model": assistant.model,
"created_at": timestamp_to_datetime(assistant.created_at),
}
return obj
def __form_vectorstore_obj(self, vector):
"""
Forms a dictionary object representing a vector store.
:param vector: Vector store object from the API.
:return: Dictionary representing the vector store.
"""
obj = {
"vector_store_id": vector.id,
"name": vector.name,
"created_at": timestamp_to_datetime(vector.created_at),
"file_counts": vector.file_counts,
"last_activate_at": timestamp_to_datetime(vector.last_active_at),
}
return obj
def __form_files_obj(self, file):
"""
Forms a dictionary object representing a file.
:param file: File object from the API.
:return: Dictionary representing the file.
"""
obj = {
"file_id": file.id,
"filename": file.filename,
"bytes": file.bytes,
"created_at": timestamp_to_datetime(file.created_at),
}
return obj
def get_assistants(self, order='desc', limit=None):
"""
Retrieves a list of assistants.
:param order: Order of retrieval, either 'asc' or 'desc'.
:param limit: Limit on the number of assistants to retrieve.
:return: List of assistants.
"""
if self._client is None:
return None
assistants = self._client.beta.assistants.list(order=order, limit=limit)
assistants = [self.__form_assistant_obj(assistant) for assistant in assistants]
self.__assistants = assistants
return self.__assistants
def create_assistant(self, args):
"""
Creates a new assistant.
:param args: Arguments for creating the assistant.
:return: Dictionary representing the newly created assistant.
"""
assistant = self._client.beta.assistants.create(
**args
)
self.set_current_assistant(assistant.id)
assistant = self.__form_assistant_obj(assistant)
return assistant
def set_current_assistant(self, assistant_id):
"""
Sets the current assistant by ID.
:param assistant_id: ID of the assistant to set as current.
"""
self.__assistant_id = assistant_id
self.__set_current_thread()
def delete_assistant(self, assistant_id):
"""
Deletes an assistant by ID.
:param assistant_id: ID of the assistant to delete.
"""
self._client.beta.assistants.delete(assistant_id=assistant_id)
def __set_current_thread(self, messages=None):
"""
Sets the current thread for the assistant.
:param messages: Optional initial messages for the thread.
:return: Thread object.
"""
if messages:
thread = self._client.beta.threads.create(messages=messages)
else:
thread = self._client.beta.threads.create()
self.__thread_id = thread.id
for assistant in self.__assistants:
if assistant["assistant_id"] == self.__assistant_id:
assistant["thread"] = self.__thread_id
break
return thread
def send_message(self, message_str, instructions='', message_file=None, assistant_id=None, thread_id=None):
"""
Sends a message to the assistant and handles streaming responses.
:param message_str: The message content.
:param instructions: Additional instructions for the assistant.
:param message_file: Optional file to attach to the message.
:param assistant_id: ID of the assistant to use.
:param thread_id: ID of the thread to use.
:yield: Streamed text responses.
"""
user_obj = self.get_message_obj("user", message_str)
self._db_handler.append(Conversation, user_obj)
args = {
'thread_id': thread_id if thread_id else self.__thread_id,
'role': "user",
'content': message_str
}
if message_file:
args['attachments'] = [
{"file_id": message_file.id, "tools": [{"type": "file_search"}]}
]
self._client.beta.threads.messages.create(**args)
response = ''
with self._client.beta.threads.runs.stream(
thread_id=thread_id if thread_id else self.__thread_id,
assistant_id=assistant_id if assistant_id else self.__assistant_id,
instructions=instructions,
event_handler=self.EventHandler(self._client),
) as stream:
for text in stream.text_deltas:
response += text
yield text
ai_obj = self.get_message_obj("assistant", response)
self._db_handler.append(Conversation, ai_obj)
def create_vector_store(self, args):
"""
Creates a new vector store.
:param args: Arguments for creating the vector store.
:return: Dictionary representing the newly created vector store.
"""
vector_store = self._client.beta.vector_stores.create(**args)
vector_store = self.__form_vectorstore_obj(vector_store)
return vector_store
def upload_files_to_vector_store(self, vector_store_id, file_paths):
"""
Uploads local files to the vector store.
:param vector_store_id: ID of the vector store.
:param file_paths: List of file paths to upload.
:return: Dictionary representing the uploaded files.
"""
file_streams = [open(path, "rb") for path in file_paths]
file_batch = self._client.beta.vector_stores.file_batches.upload_and_poll(
vector_store_id=vector_store_id, files=file_streams
)
result_obj = self.__form_files_obj(file_batch)
return result_obj
def delete_vector_store(self, vector_store_id):
"""
Deletes a vector store by ID.
:param vector_store_id: ID of the vector store to delete.
"""
self._client.beta.vector_stores.delete(vector_store_id=vector_store_id)
def delete_files_from_vector_store(self, vector_store_id, file_id):
"""
Deletes a file from the vector store.
:param vector_store_id: ID of the vector store.
:param file_id: ID of the file to delete.
"""
self._client.beta.vector_stores.files.delete(vector_store_id=vector_store_id, file_id=file_id)
def update_assistant(self, tool_resources, assistant_id=None):
"""
Updates an assistant's tool resources.
:param tool_resources: Tool resources to update.
:param assistant_id: Optional assistant ID.
:return: Updated assistant object.
"""
assistant = self._client.beta.assistants.update(
assistant_id=assistant_id if assistant_id else self.__assistant_id,
tool_resources=tool_resources
)
return assistant
def delete_file(self, file_id):
"""
Deletes a file from OpenAI files storage. It deletes the file in every vector store.
:param file_id: ID of the file to delete.
"""
self._client.files.delete(file_id=file_id)
def get_vector_stores(self, assistant_id=None):
"""
Retrieves vector stores in the assistant.
:param assistant_id: Optional assistant ID.
:return: List of vector stores.
"""
vs_obj_lst = []
assistant_id = assistant_id if assistant_id else self.__assistant_id
tool_resources = self._client.beta.assistants.retrieve(assistant_id=assistant_id).dict()['tool_resources']
if tool_resources:
file_search = tool_resources['file_search']
if file_search:
vs_ids = file_search['vector_store_ids']
for vs_id in vs_ids:
vs_instance = self._client.beta.vector_stores.retrieve(vector_store_id=vs_id)
vs_obj_lst.append(self.__form_vectorstore_obj(vs_instance))
return vs_obj_lst
def get_vector_store_files(self, vector_store_id):
"""
Retrieves files in a vector store.
:param vector_store_id: ID of the vector store.
:return: List of files in the vector store.
"""
files_lst = []
vector_store_files = self._client.beta.vector_stores.files.list(vector_store_id=vector_store_id)
for file in vector_store_files:
file = self._client.files.retrieve(file_id=file.id)
files_lst.append(self.__form_files_obj(file))
return files_lst
def clear_messages(self):
"""
Clears all messages from the conversation database.
"""
self._db_handler.delete(Conversation, None)
# Declaration as an inner class
class EventHandler(AssistantEventHandler):
"""
Event handler class for handling assistant events.
"""
def __init__(self, client):
"""
Initializes the EventHandler.
:param client: The client instance.
"""
super().__init__()
self._client = client
def on_text_created(self, text) -> None:
"""
Handles the event when text is created.
:param text: The created text.
"""
print(f"\nassistant onTextCreated > ", end="", flush=True)
def on_text_delta(self, delta, snapshot):
"""
Handles the event when there is a text delta.
:param delta: The text delta.
:param snapshot: The snapshot of the current state.
"""
print(delta.value, end="", flush=True)
def on_tool_call_created(self, tool_call):
"""
Handles the event when a tool call is created.
:param tool_call: The created tool call.
"""
print(f"\nassistant onToolCallCreated > {tool_call.type}\n", flush=True)
def on_tool_call_delta(self, delta, snapshot):
"""
Handles the event when there is a tool call delta.
:param delta: The tool call delta.
:param snapshot: The snapshot of the current state.
"""
if delta.type == 'code_interpreter':
pass
elif delta.type == 'file_search':
print(f"\nassistant > {delta.type}\n", flush=True)
def on_message_done(self, message) -> None:
"""
Handles the event when a message is done.
:param message: The completed message.
"""
print('Message done')
message_content = message.content[0].text
annotations = message_content.annotations
citations = []
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(
annotation.text, f"[{index}]"
)
if file_citation := getattr(annotation, "file_citation", None):
cited_file = self._client.files.retrieve(file_citation.file_id)
citations.append(f"[{index}] {cited_file.filename}")
print(message_content.value)
print("\n".join(citations))
# API_KEY = 'sk-...'
# wrapper = GPTAssistantV2Wrapper(api_key=API_KEY)
# #
# assistant = wrapper.create_assistant({"name": "Financial Analyst Assistant", "instructions": "You are an expert financial analyst. Use you knowledge base to answer questions about audited financial statements.", "model": "gpt-4o", "tools": [{"type": "file_search"}]})
# vector_store = wrapper.create_vector_store({"name": "Financial Statements"})
# file_batch = wrapper.upload_files_to_vector_store(vector_store.id, ["edgar/goog-10k.pdf", "edgar/brka-10k.txt"])
# #
# # # You can print the status and the file counts of the batch to see the result of this operation.
# print(file_batch.status)
# print(file_batch.file_counts)
# #
# # # Update the assistant to use the vector store
# wrapper.update_assistant({"file_search": {"vector_store_ids": [vector_store.id]}})
# #
# message_file = wrapper.upload_files_to_vector_store(vector_store.id, ["tiny_example/yjg30737.txt", 'tiny_example/pyqt-openai.txt'])
# #
# print(wrapper.get_vector_stores()[0]['file_counts'].total)
# # message= wrapper.send_message(message_str="How many shares of AAPL were outstanding at the end of of August 2023?",
# # instructions='Please address the user as Jane Doe. The user has a premium account.')
# # print(message)
#
# message = wrapper.send_message(message_str="Who is yjg30737?",
# instructions='You have to be lively as possible.')
#
# print(message)