-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelax.py
49 lines (42 loc) · 1.73 KB
/
relax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from pyminc.volumes.factory import volumeFromFile
from laplacerelaxation.minc_interface import crop_to_solution, array_to_mincvolume
from laplacerelaxation.relaxation import atlas_to_laplace_structure, atlas_to_laplace_grid
from laplacerelaxation.relaxation import solve_laplace
from matplotlib import pylab as plt
# Inputs
atlas_file = "laplace_atlas.mnc"
atlas_vol = volumeFromFile(atlas_file, labels=True)
solution_labels = [2]
dirichlet_labels = [0, 1]
neumann_labels = [3]
extend=1
remap_labels = None
if __name__ == '__main__':
# Crop atlas around solution region
atlas_cropped = crop_to_solution("laplace_atlas_cropped.mnc", atlas_vol,
atlas=atlas_vol.data, solution_labels=[2], padding=(2+extend),
close=True)
atlas_original = atlas_vol.data
atlas = atlas_cropped.data
# Setup laplace problem
laplace_structure = atlas_to_laplace_structure(atlas, solution_labels, dirichlet_labels, neumann_labels) # Define structure
laplace_grid = atlas_to_laplace_grid(atlas, solution_labels, dirichlet_labels, neumann_labels) # Initial state
# Solve
laplace_solution = solve_laplace(laplace_structure, laplace_grid, max_iters=1000, method='jacobi', w=1.0)
laplace_solution.shape
# Write back
solution_vol = array_to_mincvolume('laplace_solution_cropped.mnc', laplace_solution, like=atlas_cropped)
solution_vol.closeVolume()
# Examine what each image looks like
#
#plt.imshow(laplace_structure[:, 50, :])
#plt.colorbar()
#
#plt.imshow(laplace_grid[:, 50, :])
#plt.colorbar()
#
#plt.imshow(laplace_solution[:, 50, :])
#plt.colorbar()
#
#plt.imshow(laplace_dilated[:, 50, :])
#plt.colorbar()