-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate.py
191 lines (158 loc) · 6.49 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import sys
import io
from pathlib import Path
import argparse
import glob
import utils
import os
import time
from jamo import JAMO, Tokenizer
from torch.profiler import profile, record_function, ProfilerActivity
@torch.no_grad()
def generate(
model: JAMO,
idx: torch.Tensor,
max_new_tokens: int,
*,
max_seq_length=None,
temperature: float = 1.0,
top_k=None,
eos_id=None,
) -> torch.Tensor:
# create an empty tensor of the expected final shape and fill in the current tokens
T = idx.size(0)
T_new = T + max_new_tokens
if max_seq_length is None:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = idx.device, idx.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
# generate max_new_tokens tokens
for _ in range(max_new_tokens):
x = idx.index_select(0, input_pos).view(1, -1)
# forward
logits = model(x, max_seq_length, input_pos)
logits = logits[0, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
# advance
input_pos = input_pos[-1:] + 1
# concatenate the new generation
idx = idx.index_copy(0, input_pos, idx_next)
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
return idx[:input_pos] # include the EOS token
return idx
if __name__ == "__main__":
# Initiate the sys for the Korean Encoding.
sys.stdout.reconfigure(encoding="utf-8")
sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8')
# Argument Parser
parser = argparse.ArgumentParser(description='Train My Custom GPT 🚀!!!')
parser.add_argument("--model_size", type=str, default="small")
parser.add_argument("--model_path", type=str, default="/home/jovyan/jamo_llm/tmp/checkpoint/")
parser.add_argument("--chat", action="store_true")
parser.add_argument("--context", action="store_true")
args = parser.parse_args()
# Loading the pretrained model.
torch.set_float32_matmul_precision("high")
# is_mps = torch.backends.mps.is_available()
# if is_mps:
# device = torch.device("mps")
# else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = Path(args.model_path)
model = utils.load_model(model_path, model_size="small", device=device)
model = model.eval()
# Loading the tokenizer.
if model.config.vocab_size == 20000:
tokenizer = Tokenizer("./tokenizer/corpus.model")
elif model.config.vocab_size == 8000:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("hg_tokenizer")
print("⭐️ Loading LLM Done! ⭐️")
# @torch.no_grad()
def bash_generate(
model: JAMO,
idx: torch.Tensor,
max_new_tokens: int,
*,
max_seq_length=None,
temperature: float = 1.0,
top_k=None,
eos_id=None,
) -> torch.Tensor:
with torch.inference_mode():
T = idx.size(0)
T_new = T + max_new_tokens
if max_seq_length is None:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = idx.device, idx.dtype
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
# generate max_new_tokens tokens
for _ in range(max_new_tokens):
x = idx.index_select(0, input_pos).view(1, -1)
# with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
#with record_function("model_inference"):
logits = model(x, max_seq_length, input_pos)
# print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
#prof.export_chrome_trace("trace.json")
logits = logits[0, -1] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
input_pos = input_pos[-1:] + 1
idx = idx.index_copy(0, input_pos, idx_next)
if idx_next == eos_id:
break
else:
yield idx[:input_pos], False
yield idx[:input_pos], True
return
SOS_TOKEN = "<s>"
EOS_TOKEN = "</s>"
EOS_ID = tokenizer.encode(EOS_TOKEN)[0]
chat_parser = (
"명령어에 따른 요청을 적절히 완료하는 응답을 작성하세요.\n\n"
"### 명령어:\n{instruction}\n\n### 응답:\n"
)
contexts = ""
while True:
user_prompt = input(">>> ")
if args.context:
contexts += user_prompt + " "
roi = min(len(contexts), 200)
contexts = contexts[-roi:]
else: contexts = user_prompt
if args.chat: user_prompt = chat_parser.format_map({"instruction":contexts})
user_prompt = f"{SOS_TOKEN} {user_prompt}"
if user_prompt == "q":
break
idx = tokenizer.encode(user_prompt)
token = torch.tensor(idx, dtype=torch.long, device=device)
cur = len(SOS_TOKEN)
for idx, eos in bash_generate(model, token, max_new_tokens=256, temperature=0.8, top_k=20, eos_id=EOS_ID):
target = tokenizer.decode(idx)
if not eos:
target = target[:-1]
for char in target[cur:]:
sys.stdout.buffer.write(char.encode("utf-8"))
sys.stdout.flush()
time.sleep(0.01)
cur = len(target)
model.reset_cache()
print("\n")