-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_2014.py
executable file
·162 lines (134 loc) · 5.8 KB
/
run_2014.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import cv2
import sys
import six
from network_2014 import Network2014
from chainer import datasets
class DSNTrainer:
def __init__(self):
self.net = Network2014()
self.train, self.test = datasets.get_mnist()
def validation(self, iters=50, batch=200):
if self.reps == None:
sys.exit('do superviser()')
accuracy = np.zeros((10, 2))
indices = np.arange(len(self.test))
for i in six.moves.range(iters):
self.__gauge(i, iters, caption='validation:')
x = np.asarray(self.test[indices[batch*i:batch*(i+1)]][0]).reshape(batch, 1, 28, 28)
t = self.test[indices[batch*i:batch*(i+1)]][1]
y = self.net.predict(x)
for b in six.moves.range(batch):
accuracy[t[b]][0] += 1.0 if (y[b][0], y[b][1]) == (self.reps[t[b]][0], self.reps[t[b]][1]) else 0.0
accuracy[t[b]][1] += 1.0
print('accuracy:', np.sum(accuracy[:, 0]) / np.sum(accuracy[:, 1]))
def pretraining(self, iters=400, batch=100, lr_ini=1.0, lr_fin=0.0, var_ini=2.75, var_fin=0.5):
perm = np.random.permutation(len(self.train))
for i in six.moves.range(iters):
self.__gauge(i, iters, caption='pre-training:')
x = np.asarray(self.train[perm[batch*i:batch*(i+1)]][0]).reshape(batch, 1, 28, 28)
lr = lr_ini + (lr_fin - lr_ini) * (i%25) / (iters/4)
var = var_ini + (var_fin - var_ini) * (i%25) / (iters/4)
stop = 1 + int(float(i) / (iters * 0.25))
self.net.predict(x, stop)
self.net.pretrain(lr, var, stop)
#self.__wviz()
#cv2.destroyAllWindows()
#cv2.waitKey(1)
def finetuning(self, iters=100, batch=100, lr=0.75, beta=0.5):
if self.reps == None:
sys.exit('do superviser()')
perm = np.random.permutation(len(self.train))
for i in six.moves.range(iters):
self.__gauge(i, iters, caption='fine-tuning:')
x = np.asarray(self.train[perm[batch*i:batch*(i+1)]][0]).reshape(batch, 1, 28, 28)
t = self.train[perm[batch*i:batch*(i+1)]][1]
y1 = self.net.predict(x)
self.__update_advs(x, t, y1)
y2 = self.net.predict(self.__advs(t), adv=beta)
self.net.finetune(lr, self.__mask_adv(y1, y2, t))
def superviser(self, iters=50, batch=100):
vote = np.zeros((10, 100))
self.reps = []
temp_advs = np.zeros((100, 1, 1, 28, 28))
self.advs = np.zeros((10, 1, 1, 28, 28))
perm = np.random.permutation(len(self.train))
for i in six.moves.range(iters):
self.__gauge(i, iters, caption='searching superviser:')
x = np.asarray(self.train[perm[batch*i:batch*(i+1)]][0]).reshape(batch, 1, 28, 28)
t = self.train[perm[batch*i:batch*(i+1)]][1]
y = self.net.predict(x)
y = y[:, 0] * 10 + y[:, 1]
for b in six.moves.range(batch):
vote[t[b]][y[b]] += 1.0
if (temp_advs[y[b]] == 0).all():
temp_advs[y[b]] = x[b].reshape(1, 1, 28, 28)
for l in six.moves.range(10):
rep = np.argmax(vote[l])
vote[:, rep] = 0
self.reps.append([rep//10, rep%10])
self.advs[l] = temp_advs[rep]
def saveparams(self, path):
self.net.save(path)
def loadparams(self, path):
self.net.load(path)
def __mask(self, y, t):
mask = np.zeros(y.shape[0])
for b in six.moves.range(y.shape[0]):
mask[b] = 1.0 if (y[b][0], y[b][1]) == (self.reps[t[b]][0], self.reps[t[b]][1]) else -1.0
return mask
def __mask_adv(self, y1, y2, t):
mask = np.zeros(t.shape[0])
for b in six.moves.range(t.shape[0]):
mask[b] = 1.0 if (y2[b][0], y2[b][1]) == (self.reps[t[b]][0], self.reps[t[b]][1]) else -1.0
for b in six.moves.range(t.shape[0]):
mask[b] = 0.0 if (y1[b][0], y1[b][1]) == (self.reps[t[b]][0], self.reps[t[b]][1]) else mask[b]
return mask
def __advs(self, t):
advs = []
for l in t:
advs.append(self.advs[l])
return np.array(advs).reshape(t.shape[0], 1, 28, 28)
def __update_advs(self, x, t, y):
for l in six.moves.range(10):
if self.reps[l] in y:
for i in np.where(y==self.reps[l])[0]:
if t[i] == l:
self.advs[l] = x[i]
def __wviz(self):
w = self.net.l1[3][3].W
img = np.zeros((60, 60))
for y in six.moves.range(10):
for x in six.moves.range(10):
img[y*6:(y+1)*6, x*6:(x+1)*6] = w[y][x].reshape(6, 6)
img = cv2.resize(img, (300, 300))
'''
w = self.net.l4[0][0].W
img = np.zeros((10*30, 10*30))
for y in six.moves.range(10):
for x in six.moves.range(10):
img[y*30:(y+1)*30, x*30:(x+1)*30] = w[y][x].reshape(30, 30)
'''
cv2.imshow('wviz', img)
cv2.waitKey(1)
def __gauge(self, pos, max_pos, size=20, caption='gauge:'):
sys.stdout.write('\r' + caption + '[')
for level in six.moves.range(size):
if pos > (max_pos / size * level):
sys.stdout.write('*')
else:
sys.stdout.write('-')
sys.stdout.write(']')
sys.stdout.flush()
if pos == max_pos - 1:
sys.stdout.write('\n')
t = DSNTrainer()
t.pretraining()
t.superviser()
t.validation()
for i in six.moves.range(20):
t.finetuning()
t.validation()
t.saveparams('params_2014.npz')