-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauthorship.py
216 lines (175 loc) · 8.14 KB
/
authorship.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import nltk
import string
import pandas as pd
import math
from main import find_lex_variety
from main import find_average_word_len
from main import find_average_sentence_len
from main import calculate_punctuation_percentage
list_direction = ['VanillaChip101+.txt', 'imadetheline+.txt', 'another_author.txt']
lex_var_list = []
word_len_list = []
sentence_len_list = []
for element in list_direction:
file = open(element, encoding='utf-8')
s = file.read().split()
s = str(s)
tokens = nltk.word_tokenize(s)
remove_punctuation = str.maketrans('', '', string.punctuation)
tokens_ = [x for x in [t.translate(remove_punctuation).lower() for t in tokens] if len(x) > 0]
# чтобы убрать еще и апострофы
for element in tokens_:
if element.isalpha():
continue
else:
tokens_.remove(element)
#print(tokens_)
punctuation = calculate_punctuation_percentage(s)
res_punct.append(punctuation)
lex_variety = find_lex_variety(tokens_)
lex_var_list.append(lex_variety)
word_len = find_average_word_len(tokens_)
word_len_list.append(word_len)
sentence_len = find_average_sentence_len(s)
sentence_len_list.append(sentence_len)
df = pd.DataFrame({'Author': ['1', '2', '3'], 'lex variety': [lex_var_list[0], lex_var_list[1], lex_var_list[2]],
'average word len': [word_len_list[0], word_len_list[1], word_len_list[2]],
'average sentence len': [sentence_len_list[0], sentence_len_list[1], sentence_len_list[2]],
'punctuation percentage': [res_punct[0], res_punct[1], res_punct[2]]})
#print(df)
df.to_excel('./result_authorship.xlsx', sheet_name='results', index=False)
#stylometric tests
papers = {'Author1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'Author2': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
'unknown1': [21], 'unknown2': [22], 'unknown3': [23]}
def read_files_into_string(filenames):
strings = []
for filename in filenames:
with open(f'all_texts/text_{filename}.txt', encoding='utf-8') as f:
strings.append(f.read())
return '\n'.join(strings)
text_author = {}
for author, files in papers.items():
text_author[author] = read_files_into_string(files)
authors = ('Author1', 'Author2', 'unknown1', 'unknown2', 'unknown3')
text_author_tokens = {}
for author in authors:
tokens = nltk.word_tokenize(text_author[author])
# Filter out punctuation
text_author_tokens[author] = ([token for token in tokens
if any(c.isalpha() for c in token)])
# Kilgariff’s Chi-Squared Method
# authors we are analyzing
authors = ('Author1', 'Author2')
for author in authors:
text_author_tokens[author] = ([token.lower() for token in text_author_tokens[author]])
#text of unknown author wich we will check (after will also check for 'unknown1' and 'unknown3')
text_author_tokens['unknown2'] = ([token.lower() for token in text_author_tokens['unknown2']])
# Calculate chisquared for each of the two candidate authors
for author in authors:
# First, build a joint corpus and identify the 50 most frequent words in it
joint_corpus = (text_author_tokens[author] +
text_author_tokens['unknown2'])
joint_freq_dist = nltk.FreqDist(joint_corpus)
most_common = list(joint_freq_dist.most_common(50))
author_share = (len(text_author_tokens[author])
/ len(joint_corpus))
chisquared = 0
for word, joint_count in most_common:
# How often do we really see this common word?
author_count = text_author_tokens[author].count(word)
disputed_count = text_author_tokens['unknown2'].count(word)
# How often should we see it?
expected_author_count = joint_count * author_share
expected_disputed_count = joint_count * (1-author_share)
# Add the word's contribution to the chi-squared statistic
chisquared += ((author_count-expected_author_count) *
(author_count-expected_author_count) /
expected_author_count)
chisquared += ((disputed_count-expected_disputed_count) *
(disputed_count-expected_disputed_count)
/ expected_disputed_count)
#for author 'unknown2'
print("The Chi-squared statistic for candidate", author, "is", chisquared)
# John Burrows’ Delta Method
# check 'unknown2'
authors = ('Author1', 'Author2')
# Convert papers to lowercase to count all tokens of the same word together
# regardless of case
for author in authors:
text_author_tokens[author] = ([tok.lower() for tok in text_author_tokens[author]])
# Combine into a single corpus
whole_corpus = []
for author in authors:
whole_corpus += text_author_tokens[author]
# frequency distribution
whole_corpus_freq_dist = list(nltk.FreqDist(whole_corpus).most_common(30))
#print(whole_corpus_freq_dist[:10])
# The main data structure
features = [word for word, freq in whole_corpus_freq_dist]
feature_freqs = {}
for author in authors:
# A dictionary for each candidate's features
feature_freqs[author] = {}
# A helper value containing the number of tokens in the author's subcorpus
overall = len(text_author_tokens[author])
# Calculate each feature's presence in the subcorpus
for feature in features:
presence = text_author_tokens[author].count(feature)
feature_freqs[author][feature] = presence / overall
# The data structure into which we will be storing the "corpus standard" statistics
corpus_features = {}
for feature in features:
# Create a sub-dictionary that will contain the feature's mean
# and standard deviation
corpus_features[feature] = {}
# Calculate the mean of the frequencies expressed in the subcorpora
feature_average = 0
for author in authors:
feature_average += feature_freqs[author][feature]
feature_average /= len(authors)
corpus_features[feature]["Mean"] = feature_average
# Calculate the standard deviation using the basic formula for a sample
feature_stdev = 0
for author in authors:
diff = feature_freqs[author][feature] - corpus_features[feature]["Mean"]
feature_stdev += diff*diff
feature_stdev /= (len(authors) - 1)
feature_stdev = math.sqrt(feature_stdev)
corpus_features[feature]["StdDev"] = feature_stdev
feature_zscores = {}
for author in authors:
feature_zscores[author] = {}
for feature in features:
# Z-score = (value - mean) / stddev
feature_val = feature_freqs[author][feature]
feature_mean = corpus_features[feature]["Mean"]
feature_stdev = corpus_features[feature]["StdDev"]
feature_zscores[author][feature] = ((feature_val-feature_mean) /
feature_stdev)
# Tokenize the test case
#text of unknown author wich we will check (after will also check for 'unknown1' and 'unknown3')
testcase_tokens = nltk.word_tokenize(text_author['unknown2'])
# Filter out punctuation and lowercase the tokens
testcase_tokens = [token.lower() for token in testcase_tokens
if any(c.isalpha() for c in token)]
# Calculate the test case's features
overall = len(testcase_tokens)
testcase_freqs = {}
for feature in features:
presence = testcase_tokens.count(feature)
testcase_freqs[feature] = presence / overall
# Calculate the test case's feature z-scores
testcase_zscores = {}
for feature in features:
feature_val = testcase_freqs[feature]
feature_mean = corpus_features[feature]["Mean"]
feature_stdev = corpus_features[feature]["StdDev"]
testcase_zscores[feature] = (feature_val - feature_mean) / feature_stdev
#print("Test case z-score for feature", feature, "is", testcase_zscores[feature])
for author in authors:
delta = 0
for feature in features:
delta += math.fabs((testcase_zscores[feature] -
feature_zscores[author][feature]))
delta /= len(features)
print("Delta score for candidate", author, "is", delta)