Skip to content

Latest commit

 

History

History
52 lines (44 loc) · 1.16 KB

README.md

File metadata and controls

52 lines (44 loc) · 1.16 KB

Deep Learning with PyTorch 1.X

Implementations of neural network models with torch (>=1.0)

See also implementations with TesorFlow 2.0 here.

Requirements

  • PyTorch >= 1.0
$ pip install torch torchvision

Models

  • Logistic Regression
  • MLP
  • LeNet
  • ResNet (ResNet34, ResNet50)
  • Encoder-Decoder (LSTM)
  • Encoder-Decoder (Attention)
  • Transformer
  • Deep Q-Network
  • Variational Autoencoder
  • Generative Adversarial Network
  • Conditional GAN
models/
├── conditonal_gan_mnist.py
├── dqn_cartpole.py
├── encoder_decoder_attention.py
├── encoder_decoder_lstm.py
├── gan_fashion_mnist.py
├── lenet_mnist.py
├── logistic_regression_mnist.py
├── mlp_mnist.py
├── resnet34_fashion_mnist.py
├── resnet50_fashion_mnist.py
├── transformer.py
├── vae_fashion_mnist.py
│
└── layers/
    ├── Attention.py
    ├── DotProductAttention.py
    ├── Flatten.py
    ├── GlobalAvgPool2d.py
    ├── MultiHeadAttention.py
    ├── PositionalEncoding.py
    └── ScaledDotProductAttention.py