-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvival_analysis.html
757 lines (725 loc) · 33.4 KB
/
survival_analysis.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.4.555">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Untitled</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="survival_analysis_files/libs/clipboard/clipboard.min.js"></script>
<script src="survival_analysis_files/libs/quarto-html/quarto.js"></script>
<script src="survival_analysis_files/libs/quarto-html/popper.min.js"></script>
<script src="survival_analysis_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="survival_analysis_files/libs/quarto-html/anchor.min.js"></script>
<link href="survival_analysis_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="survival_analysis_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="survival_analysis_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="survival_analysis_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="survival_analysis_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<script type="text/javascript">
const typesetMath = (el) => {
if (window.MathJax) {
// MathJax Typeset
window.MathJax.typeset([el]);
} else if (window.katex) {
// KaTeX Render
var mathElements = el.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
window.katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: false
});
}
}
}
}
window.Quarto = {
typesetMath
};
</script>
</head>
<body class="fullcontent">
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title">Untitled</h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="cox-model" class="level1">
<h1>cox model</h1>
<p><span class="citation" data-cites="cox1972">(<a href="#ref-cox1972" role="doc-biblioref">Cox 1972</a>)</span>cox # 1. Regression Models</p>
<section id="one-individuals-data" class="level2">
<h2 class="anchored" data-anchor-id="one-individuals-data">1.1 One Individual’s Data</h2>
<p>For an individual with covariates <span class="math inline">\(z_1, \dots, z_p\)</span>, the failure time is represented as <span class="math inline">\(t_i\)</span>. The failure rate, also known as the hazard function, for this individual is given by:</p>
<p><span class="math display">\[
\lambda(t \mid z_i) = \exp(z_i^T \beta) \times \lambda_0(t)
\]</span></p>
<p>Where: - <span class="math inline">\(z_i\)</span>: vector of covariates for individual <span class="math inline">\(i\)</span>, - <span class="math inline">\(\beta\)</span>: coefficient vector that needs to be estimated, - <span class="math inline">\(\lambda_0(t)\)</span>: baseline hazard function (i.e., the hazard when <span class="math inline">\(z_i = 0\)</span>).</p>
</section>
<section id="proportional-hazard-assumption" class="level2">
<h2 class="anchored" data-anchor-id="proportional-hazard-assumption">1.2 Proportional Hazard Assumption</h2>
<p>Under the proportional hazard assumption, the ratio of hazard functions between two individuals with covariates <span class="math inline">\(z_i\)</span> and <span class="math inline">\(z_j\)</span> remains constant over time:</p>
<p><span class="math display">\[
\frac{\lambda(t \mid z_i)}{\lambda(t \mid z_j)} = \exp((z_i - z_j)^T \beta)
\]</span></p>
<p>This property is what makes the Cox proportional hazards model useful in survival analysis.</p>
</section>
<section id="likelihood-function" class="level2">
<h2 class="anchored" data-anchor-id="likelihood-function">1.3 Likelihood Function</h2>
<p>For censored data, the likelihood function of the hazard rate for <span class="math inline">\(n\)</span> individuals is given by:</p>
<p><span class="math display">\[
L(\beta) = \prod_{i=1}^{n} \left[ \lambda(t_i \mid z_i) \right]^{\delta_i} \exp \left( - \int_0^{t_i} \lambda(s \mid z_i) ds \right)
\]</span></p>
<p>Where: - <span class="math inline">\(t_i\)</span>: observed failure or censoring time for individual <span class="math inline">\(i\)</span>, - <span class="math inline">\(\delta_i\)</span>: event indicator for individual <span class="math inline">\(i\)</span>, where <span class="math inline">\(\delta_i = 1\)</span> if the event is observed (failure) and <span class="math inline">\(\delta_i = 0\)</span> if censored.</p>
<p>For computational ease, the partial likelihood function, <span class="math inline">\(L_P(\beta)\)</span>, can be expressed as:</p>
<p><span class="math display">\[
L_P(\beta) = \prod_{i=1}^{n} \frac{\exp(z_i^T \beta)}{\sum_{j \in R(t_i)} \exp(z_j^T \beta)}
\]</span></p>
<p>Where: - <span class="math inline">\(R(t_i)\)</span>: the set of individuals still at risk at time <span class="math inline">\(t_i\)</span>.</p>
<hr>
</section>
</section>
<section id="product-limit-method-for-censored-data-kaplan-meier-estimator" class="level1">
<h1>2. Product-Limit Method for Censored Data (Kaplan-Meier Estimator)</h1>
<p>The Kaplan-Meier estimator is used to estimate the survival probability in the presence of censored data. For <span class="math inline">\(n\)</span> independent individuals, the survival probability is given by:</p>
<p><span class="math display">\[
S(t) = P(T \geq t) = \prod_{j: t_j \leq t} \left(1 - \frac{d_j}{Y_j} \right)
\]</span></p>
<p>Where: - <span class="math inline">\(d_j\)</span>: the number of failures at time <span class="math inline">\(t_j\)</span>, - <span class="math inline">\(Y_j\)</span>: the number of individuals at risk just before time <span class="math inline">\(t_j\)</span>.</p>
<p>This estimator assumes that censored data are randomly distributed.</p>
<hr>
</section>
<section id="log-rank-test-2-sample-comparison" class="level1">
<h1>3. Log-Rank Test (2-Sample Comparison)</h1>
<section id="overview" class="level2">
<h2 class="anchored" data-anchor-id="overview">3.1 Overview</h2>
<p>The log-rank test is used to compare the survival distributions of two groups. It is a non-parametric test that assumes that the hazard functions are proportional.</p>
<ul>
<li><strong>Slight advantage</strong>: Is the difference significant enough? This is determined by calculating the test statistic.</li>
<li><strong>At first glance</strong>: This can be thought of as a generalization of the <span class="math inline">\(t\)</span>-test to survival data, where the censoring mechanism is taken into account.</li>
</ul>
<section id="sample-kaplan-meire" class="level3">
<h3 class="anchored" data-anchor-id="sample-kaplan-meire">1-sample Kaplan-Meire</h3>
<p>Unfolds in time</p>
<p>conditional probability</p>
<p>handel more on censoring data(into conditional probability)</p>
<p>with standard error–Green wood’s formula</p>
</section>
</section>
<section id="handling-ties-log-rank-test-table" class="level2">
<h2 class="anchored" data-anchor-id="handling-ties-log-rank-test-table">3.2 Handling Ties (Log-Rank Test Table)</h2>
<table class="caption-top table">
<thead>
<tr class="header">
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Died</td>
<td><span class="math inline">\(d_{1k}\)</span></td>
<td><span class="math inline">\(d_{2k}\)</span></td>
<td><span class="math inline">\(d_k\)</span></td>
</tr>
<tr class="even">
<td>Survived</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="odd">
<td>Total</td>
<td><span class="math inline">\(r_{1k}\)</span></td>
<td><span class="math inline">\(r_{2k}\)</span></td>
<td><span class="math inline">\(r_k\)</span></td>
</tr>
</tbody>
</table>
<p>Where: - <span class="math inline">\(d_k\)</span>: total number of deaths at time <span class="math inline">\(t_k\)</span>, - <span class="math inline">\(r_k\)</span>: number of individuals at risk at time <span class="math inline">\(t_k\)</span>, - <span class="math inline">\(d_{1k}\)</span>, <span class="math inline">\(d_{2k}\)</span>: number of deaths in group 1 and group 2 at time <span class="math inline">\(t_k\)</span>, respectively.</p>
</section>
<section id="test-statistic" class="level2">
<h2 class="anchored" data-anchor-id="test-statistic">3.3 Test Statistic</h2>
<p>To test the null hypothesis <span class="math inline">\(H_0\)</span>: No difference between survival curves (i.e., <span class="math inline">\(S_1(t) = S_2(t)\)</span>), the test statistic is computed as:</p>
<p><span class="math display">\[
W = \frac{\sum_{k=1}^{K} (O_k - E_k)}{\sqrt{\text{Var}(O_k)}}
\]</span></p>
<p>Where: - <span class="math inline">\(O_k\)</span>: observed number of events in group 1 at time <span class="math inline">\(t_k\)</span>, - <span class="math inline">\(E_k\)</span>: expected number of events under the null hypothesis, - <span class="math inline">\(\text{Var}(O_k)\)</span>: the variance of <span class="math inline">\(O_k\)</span>.</p>
<p>The expectation and variance are calculated as:</p>
<p><span class="math display">\[
E(O_k) = \frac{r_{1k}}{r_k} d_k
\]</span></p>
<p><span class="math display">\[
\text{Var}(O_k) = \frac{r_{1k} r_{2k} d_k (r_k - d_k)}{r_k^2 (r_k - 1)}
\]</span></p>
<p>Under the null hypothesis:</p>
<p><span class="math display">\[
W \sim N(0,1)
\]</span></p>
<p>The <span class="math inline">\(p\)</span>-value can be computed from this statistic to assess the significance.</p>
<hr>
</section>
</section>
<section id="cox-1972-proportional-hazards-model" class="level1">
<h1>4. Cox (1972) Proportional Hazards Model</h1>
<section id="failure-time" class="level2">
<h2 class="anchored" data-anchor-id="failure-time">4.1 Failure Time</h2>
<p>Let <span class="math inline">\(T\)</span> be a continuous random variable representing the failure time. The survival function is defined as:</p>
<p><span class="math display">\[
S(t) = P(T \geq t) = 1 - F(t)
\]</span></p>
<p>Where <span class="math inline">\(F(t)\)</span> is the cumulative distribution function (CDF) of <span class="math inline">\(T\)</span>.</p>
<section id="discrete-case" class="level3">
<h3 class="anchored" data-anchor-id="discrete-case">4.2 Discrete Case</h3>
<p>In the discrete case, the hazard function <span class="math inline">\(\lambda(t_k)\)</span> at time <span class="math inline">\(t_k\)</span> is defined as:</p>
<p><span class="math display">\[
\lambda(t_k) = \frac{P(t_k \leq T < t_{k+1} \mid T \geq t_k)}{h_k} = \frac{f(t_k)}{S(t_k)}
\]</span></p>
<p>Where <span class="math inline">\(f(t_k)\)</span> is the probability density function (PDF) of <span class="math inline">\(T\)</span> at time <span class="math inline">\(t_k\)</span>.</p>
</section>
<section id="continuous-case" class="level3">
<h3 class="anchored" data-anchor-id="continuous-case">4.3 Continuous Case</h3>
<p>In the continuous case, the hazard function <span class="math inline">\(\lambda(t)\)</span> is defined as:</p>
<p><span class="math display">\[
\lambda(t) = \lim_{\Delta t \to 0} \frac{P(t \leq T < t + \Delta t \mid T \geq t)}{\Delta t} = \frac{f(t)}{S(t)}
\]</span></p>
<p>The hazard function represents the instantaneous failure rate at time <span class="math inline">\(t\)</span> given survival until time <span class="math inline">\(t\)</span>.</p>
<p>The relationship between the hazard function and the survival function is:</p>
<p><span class="math display">\[
\lambda(t) = -\frac{d}{dt} \log S(t)
\]</span></p>
<p>Which implies that:</p>
<p><span class="math display">\[
S(t) = e^{-\int_0^t \lambda(u) du}
\]</span></p>
</section>
<section id="likelihood-function-for-censored-data" class="level3">
<h3 class="anchored" data-anchor-id="likelihood-function-for-censored-data">4.4 Likelihood Function for Censored Data</h3>
<p>For censored data, the likelihood function can be expressed as:</p>
<p><span class="math display">\[
L = \prod_{i=1}^{n} \left[ \lambda(t_i) \right]^{\delta_i} \left[ S(t_i) \right]^{1 - \delta_i}
\]</span></p>
<p>Where: - <span class="math inline">\(\delta_i = 1\)</span> if the event is observed (failure), - <span class="math inline">\(\delta_i = 0\)</span> if censored.</p>
<p>This likelihood can be maximized to estimate the coefficients <span class="math inline">\(\beta\)</span> in the Cox model.</p>
</section>
<section id="section" class="level3">
<h3 class="anchored" data-anchor-id="section">4.5</h3>
<div class="sourceCode" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Load necessary libraries</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survival)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(survminer)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Example data: Lung cancer survival dataset</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="fu">data</span>(lung)</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>lung<span class="sc">$</span>sex <span class="ot"><-</span> <span class="fu">factor</span>(lung<span class="sc">$</span>sex, <span class="at">levels =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>), <span class="at">labels =</span> <span class="fu">c</span>(<span class="st">"Male"</span>, <span class="st">"Female"</span>))</span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Kaplan-Meier survival curve</span></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>km_fit <span class="ot"><-</span> <span class="fu">survfit</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> sex, <span class="at">data =</span> lung)</span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="fu">ggsurvplot</span>(km_fit, <span class="at">data =</span> lung, <span class="at">pval =</span> <span class="cn">TRUE</span>, <span class="at">conf.int =</span> <span class="cn">TRUE</span>,</span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> <span class="at">risk.table =</span> <span class="cn">TRUE</span>, <span class="at">ggtheme =</span> <span class="fu">theme_minimal</span>())</span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="co"># Log-rank test to compare survival between Male and Female</span></span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a>log_rank_test <span class="ot"><-</span> <span class="fu">survdiff</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> sex, <span class="at">data =</span> lung)</span>
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(log_rank_test)</span>
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="co"># Cox Proportional Hazards Model</span></span>
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a>cox_model <span class="ot"><-</span> <span class="fu">coxph</span>(<span class="fu">Surv</span>(time, status) <span class="sc">~</span> sex <span class="sc">+</span> age <span class="sc">+</span> ph.ecog, <span class="at">data =</span> lung)</span>
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(cox_model)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
</section>
</section>
<section id="references-of-relavent-paper" class="level1 unnumbered">
</section>
<div id="quarto-appendix" class="default"><section class="quarto-appendix-contents" role="doc-bibliography" id="quarto-bibliography"><h2 class="anchored quarto-appendix-heading">References of relavent paper</h2><div id="refs" class="references csl-bib-body hanging-indent" data-entry-spacing="0" role="list">
<div id="ref-cox1972" class="csl-entry" role="listitem">
Cox, David R. 1972. <span>“Regression Models and Life<span>-</span>Tables.”</span> <em>Journal of the Royal Statistical Society: Series B (Methodological)</em> 34 (2): 187–202.
</div>
</div></section></div></main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>