-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflags.py
executable file
·56 lines (51 loc) · 2.77 KB
/
flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
slim = tf.contrib.slim
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_float('initial_learning_rate', 0.001,
'''Initial learning rate.''')
tf.app.flags.DEFINE_float('num_epochs_per_decay', 5.0,
'''Epochs after which learning rate decays.''')
tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.97,
'''Learning rate decay factor.''')
tf.app.flags.DEFINE_float('learning_rate_decay_step', 30000,
'''Learning rate decay factor.''')
tf.app.flags.DEFINE_float('pckat', 0.5,
'''PCK Measurement @''')
tf.app.flags.DEFINE_integer('batch_size', 1, '''The batch size to use.''')
tf.app.flags.DEFINE_integer('eval_size', 500, '''The batch size to use.''')
tf.app.flags.DEFINE_integer('num_iterations', 2, '''The number of iterations to unfold the pose machine.''')
tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
'''How many preprocess threads to use.''')
tf.app.flags.DEFINE_integer('n_landmarks', 38,
'''number of landmarks''')
tf.app.flags.DEFINE_integer('rescale', 256,
'''training mode''')
tf.app.flags.DEFINE_string('train_model', '',
'''training mode''')
tf.app.flags.DEFINE_string('dataset_dir', '/vol/atlas/databases/body/SupportVectorBody/crop340-mpii-train/',
'''Directory where to load datas '''
'''and checkpoint.''')
tf.app.flags.DEFINE_string('train_dir', 'ckpt/train',
'''Directory where to write event logs '''
'''and checkpoint.''')
tf.app.flags.DEFINE_string('eval_dir', '',
'''Directory where to write event logs '''
'''and checkpoint.''')
tf.app.flags.DEFINE_string('pretrained_model_checkpoint_path', '',
'''If specified, restore this pretrained model '''
'''before beginning any training.''')
tf.app.flags.DEFINE_string(
'pretrained_resnet_checkpoint_path', '',
'''If specified, restore this pretrained resnet '''
'''before beginning any training.'''
'''This restores only the weights of the resnet model''')
tf.app.flags.DEFINE_integer('max_steps', 100000,
'''Number of batches to run.''')
tf.app.flags.DEFINE_string('train_device', '/gpu:0',
'''Device to train with.''')
tf.app.flags.DEFINE_string('pred_mode', 'pred',
'''prediction mode''')
tf.app.flags.DEFINE_string('db_name', 'mpii',
'''db name''')
tf.app.flags.DEFINE_integer('flip_pred', 0,
'''db name''')