You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
你好,请问我在训练加载完模型后,遇到了下面的错误,是哪一步出现了问题呢
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 63 weight, 73 weight (no decay), 72 bias
train: Scanning 'datasets\datasets_track\train' images and labels...4557 found, 0 missing, 0 empty, 4557 corrupted: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████| 4557/4557 [00:05<00:00, 769.07it/s]
train: WARNING: datasets\datasets_track\images\train\000001.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000002.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000003.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000004.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000005.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000006.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000007.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000009.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000010.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000011.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000012.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000013.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000014.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000015.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000017.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000018.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000019.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: WARNING: datasets\datasets_track\images\train\000020.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is object. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)
train: train: New cache created: datasets\datasets_track\train.cache
Traceback (most recent call last):
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 672, in
main(opt)
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 569, in main
train(opt.hyp, opt, device, callbacks)
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 222, in train
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, names, single_cls,
File "D:\Yolov8_obb_Prune_Track-latest\utils\datasets.py", line 101, in create_dataloader
dataset = LoadImagesAndLabels(path, names, imgsz, batch_size,
File "D:\Yolov8_obb_Prune_Track-latest\utils\datasets.py", line 451, in init
labels, shapes, self.segments = zip(*cache.values())
ValueError: not enough values to unpack (expected 3, got 0)
这是我的数据集分布和标签文件,
The text was updated successfully, but these errors were encountered:
你好,请问我在训练加载完模型后,遇到了下面的错误,是哪一步出现了问题呢



Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 63 weight, 73 weight (no decay), 72 bias
train: Scanning 'datasets\datasets_track\train' images and labels...4557 found, 0 missing, 0 empty, 4557 corrupted: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████| 4557/4557 [00:05<00:00, 769.07it/s]
train: WARNING: datasets\datasets_track\images\train\000001.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000002.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000003.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000004.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000005.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000006.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000007.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000009.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000010.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000011.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000012.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000013.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000014.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000015.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000017.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000018.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000019.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: WARNING: datasets\datasets_track\images\train\000020.jpg: ignoring corrupt image/label: The DType <class 'numpy._IntegerAbstractDType'> could not be promoted by <class 'numpy.dtypes.StrDType'>. This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is
object
. The full list of DTypes is: (<class 'numpy._IntegerAbstractDType'>, <class 'numpy.dtypes.StrDType'>)train: train: New cache created: datasets\datasets_track\train.cache
Traceback (most recent call last):
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 672, in
main(opt)
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 569, in main
train(opt.hyp, opt, device, callbacks)
File "D:\Yolov8_obb_Prune_Track-latest\train.py", line 222, in train
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, names, single_cls,
File "D:\Yolov8_obb_Prune_Track-latest\utils\datasets.py", line 101, in create_dataloader
dataset = LoadImagesAndLabels(path, names, imgsz, batch_size,
File "D:\Yolov8_obb_Prune_Track-latest\utils\datasets.py", line 451, in init
labels, shapes, self.segments = zip(*cache.values())
ValueError: not enough values to unpack (expected 3, got 0)
这是我的数据集分布和标签文件,
The text was updated successfully, but these errors were encountered: