-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathocsvm.py
127 lines (104 loc) · 3.32 KB
/
ocsvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
'''
ocsvm
author: lizhijian
date: 2019-10-30
'''
import sys
import os
import glob
from keras.applications.resnet50 import ResNet50, preprocess_input
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import IsolationForest
from sklearn import svm
from sklearn.externals import joblib
import cv2
import numpy as np
from tqdm import tqdm
class OCSVM(object):
def __init__(self):
self.model = ResNet50(input_shape=(224, 224,3),weights=None,include_top=False)
# the weights below downloaded from ('https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5')
self.model.load_weights('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5')
self.ss = StandardScaler()
self.ocsvmclf = svm.OneClassSVM(gamma=0.001,
kernel='rbf',
nu=0.08)
self.ifclf = IsolationForest(contamination=0.08,
max_features=1.0,
max_samples=1.0,
n_estimators=40)
self.pca = None
def extractResnet(self, X):
# X numpy array
fe_array = self.model.predict(X)
return fe_array
def prepareData(self, path):
datalist = glob.glob(path+'/*.jpg')
felist = []
for p in tqdm(datalist):
img = cv2.imread(p)
img = cv2.resize(img, (224, 224))
#img = preprocess_input(img, mode='tf')
img = np.expand_dims(img, axis=0)
fe = self.extractResnet(img)
felist.append(fe.reshape(1,-1))
X_t = felist[0]
for i in range(len(felist)):
if i == 0:
continue
X_t = np.r_[X_t, felist[i]]
return X_t
def initPCA(self, X_train):
self.pca = PCA(n_components=X_train.shape[0], whiten=True)
def doSSFit(self, Xs):
self.ss.fit(Xs)
def doPCAFit(self,Xs):
self.pca = self.pca.fit(Xs)
return Xs
def doSSTransform(self, Xs):
Xs = self.ss.transform(Xs)
return Xs
def doPCATransform(self, Xs):
Xs = self.pca.transform(Xs)
return Xs
def train(self, Xs):
self.ocsvmclf.fit(Xs)
self.ifclf.fit(Xs)
def predict(self, Xs):
pred = self.ocsvmclf.predict(Xs)
return pred
def trainSVM():
f = OCSVM()
X_train = f.prepareData('data/train')
# do StandardScaler
f.doSSFit(X_train)
X_train = f.doSSTransform(X_train)
# do pca
f.initPCA(X_train)
f.doPCAFit(X_train)
X_train = f.doPCATransform(X_train)
# train svm
f.train(X_train)
# save our models
joblib.dump(f.ocsvmclf, 'ocsvmclf.model')
joblib.dump(f.pca, 'pca.model')
joblib.dump(f.ss,'ss.model')
def loadSVMAndPredict():
f = OCSVM()
# load models
f.ocsvmclf = joblib.load('ocsvmclf.model')
f.pca = joblib.load('pca.model')
f.ss = joblib.load('ss.model')
X_test = f.prepareData('data/test')
# do test data ss
X_test = f.doSSTransform(X_test)
# do test data pca
X_test = f.doPCATransform(X_test)
# predict
preds = f.predict(X_test)
print(f'{preds}')
if __name__ == '__main__':
trainSVM()
loadSVMAndPredict()
pass