-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15 Bridge Tree.cpp
202 lines (153 loc) · 3.78 KB
/
15 Bridge Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/**
BRIDGE TREE
-----------
1) Remove bridges from the graph
2) Find connected components using the remaining (non bridge) edges using dsu or dfs or whatever you like.
3) Treat each connected component as a node, and for each bridge add an edge between the two components that it connects.
Complexity :
Resources:
1 ) https://tanujkhattar.wordpress.com/2016/01/10/the-bridge-tree-of-a-graph/
**/
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>
using indexed_set = tree<
TIn, null_type, less<TIn>,
rb_tree_tag, tree_order_statistics_node_update>;
/*
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
*/
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 1e4+7;
const LL LINF = 1e17;
string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
vector<int>adj[nmax];
vector<int>BridgeTree[nmax];
set<int>newGraph[nmax];
vector<bool>visited;
vector<int>SCCMap;
vector<int>numBridgesConToComp;
vector<int> discov; /** Discovery time in DFS **/
vector<int> low; /** min(all discovery time of subtree of a vertex u including the back-edge ancestors) **/
vector<PII> articulationBridge;
int timer;
int scc = 0;
void initialize()
{
timer = 0;
visited.assign(nmax,false);
SCCMap.assign(nmax,-1);
numBridgesConToComp.assign(nmax,0);
discov.assign(nmax,-1);
low.assign(nmax,-1);
articulationBridge.clear();
for(int i=0; i<nmax; i++)
adj[i].clear() , newGraph[i].clear();
}
void dfs(int v,int p)
{
visited[v] = true;
discov[v] = low[v] = timer++;
int child = 0;
for(int next:adj[v])
{
child++;
if(next==p)
continue;
if(visited[next])
low[v] = min(low[v],discov[next]);
else
{
dfs(next,v);
low[v] = min(low[v],low[next]);
if(discov[v]<low[next])
{
articulationBridge.push_back({v,next});
newGraph[v].erase(next);
newGraph[next].erase(v);
}
}
}
}
void scc_dfs(int u)
{
visited[u] = true;
SCCMap[u] = scc;
for(int next:newGraph[u])
{
if(!visited[next])
scc_dfs(next);
}
}
int main()
{
//freopen("out.txt","w",stdout);
optimizeIO();
int tc;
cin>>tc;
for(int q=1;q<=tc;q++)
{
initialize();
int n,m;
cin>>n>>m;
for(int i=1; i<=m; i++)
{
int a,b;
cin>>a>>b;
adj[a].push_back(b);
adj[b].push_back(a);
newGraph[a].insert(b);
newGraph[b].insert(a);
}
for(int i=0; i<n; i++)
{
if(!visited[i])
dfs(i,-1);
}
visited.assign(nmax,false);
scc = 0;
for(int i=1; i<=n; i++) /** 1 based indexing **/
{
if(!visited[i])
scc_dfs(i);
scc++;
}
for(auto bridge:articulationBridge)
{
BridgeTree[SCCMap[bridge.F]].push_back(SCCMap[bridge.S]);
BridgeTree[SCCMap[bridge.S]].push_back(SCCMap[bridge.F]);
}
}
return 0;
}