-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path53 Prime Factorization in a Range.cpp
226 lines (178 loc) · 4.63 KB
/
53 Prime Factorization in a Range.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/**
Range Prime Factorization (OPTIMIZED)
===============================
Bruteforce Range Factorization
------------------------------
Segmented Sieve + Bruteforce prime factorization
O( (R-L+1) log(logR) ) + O( (R-L) * (sqrt(N)/log(sqrt(N)) * log(N)) )
For larger N value (like 1e12) it will get TLE
Optimization Idea 1 (will eventually fail) :
--------------------------------------------
using SPF (smallest prime factors) we could do prime factorization in logN , but we can't find all spf in [1,1e12] in memory limit
will optimize for lower values of N
Optimization Idea 2 :
--------------------
modifying segmented sieve to get all the prime factors of a number without the powers
and later use this information to Factorize in logN
As we don't need to iterate upto logN for every Number , the factorization complexity will reduce to logN
**/
/** Which of the favors of your Lord will you deny ? **/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define F first
#define S second
#define ALL(x) (x).begin(), (x).end()
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)
#ifndef ONLINE_JUDGE
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#else
#define DBG(x)
#define endl "\n"
#endif
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 2e5+7;
#define int long long
/**
Segmented Sieve
Range of [L,R] ~ 1e7 and R ~ 1e12
**/
const int pnmax = 1e6+10; /** ~ sqrt(R) **/
const int pnmax2 = 5e5+10; /** diff of R and L **/
LL LIM = 1e6+5; /** ~ sqrt(R) **/
vector<LL>primes;
bool isP[pnmax];
bool isPFinal[pnmax2];
void sieve()
{
for(LL i=2; i<=LIM; i++)
isP[i] = true;
for(LL i=2; i<=LIM; i++) /** If I don't want to know the primes , it is enough to loop upto sqrt(LIM) here **/
{
if(isP[i]==true)
{
primes.push_back(i);
for(LL j=i*i; j<=LIM; j+=i)
isP[j]=false;
}
}
}
/** Prime Factorization **/
vector<vector<LL>>factorization(pnmax2);
vector<LL> primeFactors(LL N,vector<LL>&factors_init)
{
vector<LL>factors;
for(auto PF:factors_init) /// stop at sqrt(N), but N can get smaller
{
while (N % PF == 0)
{
N /= PF; /// remove this PF
factors.push_back(PF);
}
}
if (N != 1) factors.push_back(N); /// special case if N is actually a prime
return factors;
}
/** Number of Divisors **/
LL NOD[pnmax2];
LL number_of_Divisors(LL N,vector<LL>&factors_init)
{
LL ans = 1;
for(auto PF:factors_init)
{
LL power = 0; /// count the power
while (N % PF == 0)
{
N /= PF;
power++;
}
ans *= (power + 1); /// according to the formula
}
if (N != 1) ans *= 2; /// (last factor has pow = 1, we add 1 to it)
return ans;
}
void segmented_sieve(LL L,LL R)
{
vector<vector<int>>factors_init(pnmax2);
/// Step 1: we will identify all the prime factors of Numbers in the range [l,r] . But we will not know the powers . That we will do in Step 2
for(auto p:primes)
{
if(p*p > R)
break;
LL j=p*p;
if(j<L)
j=((L+p-1)/p)*p;
for(; j<=R; j+=p)
factors_init[j-L].push_back(p);
}
/// Step 2 : Find the powers
for(LL i=L; i<=R; i++)
{
NOD[i-L] = number_of_Divisors(i,factors_init[i-L]);
factorization[i-L] = primeFactors(i,factors_init[i-L]);
}
}
int32_t main()
{
optimizeIO();
sieve();
int tc;
cin>>tc;
while(tc--)
{
LL l,r;
cin>>l>>r;
segmented_sieve(l,r);
for(int i=l;i<=r;i++)
{
cout<<"Number : "<<i<<endl;
cout<<"NOD : "<<NOD[i-l]<<endl;
cout<<"Factorization : "<<endl;
DBG(factorization[i-l]);
}
}
return 0;
}
/**
**/
template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" " ;
}
os<<" ]";
return os;
}
template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}