-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14 Number of Paths with certain cost.cpp
136 lines (98 loc) · 2.41 KB
/
14 Number of Paths with certain cost.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/**
Problem : Number of paths in a matrix with certain cost
Find the number of paths from [1,1] to [r,c] with TARGET weight
**/
/**Which of the favors of your Lord will you deny ?**/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX
#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<class TIn>
using indexed_set = tree<
TIn, null_type, less<TIn>,
rb_tree_tag, tree_order_statistics_node_update>;
/*
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
*/
inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}
const int nmax = 100+7;
const LL LINF = 1e17;
string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}
//bool cmp(const PII &A,const PII &B)
//{
//
//}
int r = 4, c = 4;
int ara[5][5] =
{
{ 0, 0, 0, 0, 0 },
{ 0, 4, 7, 1, 6 },
{ 0, 5, 7, 3, 9 },
{ 0, 3, 2, 1, 2 },
{ 0, 7, 1, 6, 3 }
};
int target = 25;
/** 1 based indexing **/
/**
dp[i][j][cost] = number of paths with TARGET weight starting from ara[i][j] , current weight = cost
dp[i][j][cost] = solve(i,j+1,cost + ara[i][j+1]) + solve(i+1,j,cost + ara[i+1][j])
**/
int dx[] = {-1,0,1,0};
int dy[] = {0,1,0,-1};
bool isValid(int i,int j)
{
if(i>=1 && i<=r && j>=1 && j<=c)
return true;
return false;
}
int dp[nmax][nmax][nmax]; /** use unordered_map<string,int>dp for memory optimization **/
int solve(int i,int j,int cost)
{
if(cost>target)
return 0;
if(i==r && j==c)
{
if(cost==target) return 1;
else return 0;
}
int &ret = dp[i][j][cost];
if(ret!=-1) return ret;
ret = 0;
if(isValid(i,j+1)) ret += solve(i,j+1,cost + ara[i][j+1]);
if(isValid(i+1,j)) ret += solve(i+1,j,cost + ara[i+1][j]);
return ret;
}
int main()
{
optimizeIO();
memset(dp,-1,sizeof dp);
cout<<solve(1,1,ara[1][1])<<endl;
// cout<<dp[1][1][ara[1][1]]<<endl;
// cout<<dp[r][c-1][22]<<endl;
// cout<<dp[r-1][c][22]<<endl;
return 0;
}