-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyolov5_lv.cpp
312 lines (271 loc) · 10 KB
/
yolov5_lv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//
// Created by meruro on 2023/5/19.
//
#include<vector>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2\imgproc.hpp>
#include<opencv2\imgproc\types_c.h>
#include <NIVisionExtLib.h>
#include "NIVisionExtExports.h"
#define PI 3.1415926
//弧度转角度
#define r2a(x) ((x)*180/PI)
//角度转弧度
#define a2r(x) ((x)*PI/180)
//日志
//#include "mylog.h"
//#include "spdlog/sinks/basic_file_sink.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;
// Constants.
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.5;
const float NMS_THRESHOLD = 0.45;
const float CONFIDENCE_THRESHOLD = 0.45;
// Text parameters.
const float FONT_SCALE = 0.7;
const int FONT_FACE = FONT_HERSHEY_SIMPLEX;
const int THICKNESS = 1;
// Colors.
Scalar BLACK = Scalar(0, 0, 0);
Scalar BLUE = Scalar(255, 178, 50);
Scalar YELLOW = Scalar(0, 255, 255);
Scalar RED = Scalar(0, 0, 255);
// 类别
vector<string> class_list;
// 权重
Net net;
ofstream outfile;
// Draw the predicted bounding box.
void draw_label(Mat &input_image, string label, int left, int top) {
// Display the label at the top of the bounding box.
int baseLine;
Size label_size = getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS, &baseLine);
top = max(top, label_size.height);
// Top left corner.
Point tlc = Point(left, top);
// Bottom right corner.
Point brc = Point(left + label_size.width, top + label_size.height + baseLine);
// Draw black rectangle.
rectangle(input_image, tlc, brc, BLACK, FILLED);
// Put the label on the black rectangle.
putText(input_image, label, Point(left, top + label_size.height), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS);
}
double getSeconds(chrono::time_point<chrono::system_clock> &start,
chrono::time_point<chrono::system_clock> &end) {
auto duration = chrono::duration_cast<chrono::microseconds>(end - start);
return double(duration.count()) / 1000000;
}
vector<Mat> pre_process(Mat &input_image) {
// Convert to blob.
Mat blob;
blobFromImage(input_image, blob, 1. / 255., Size(INPUT_WIDTH, INPUT_HEIGHT), Scalar(), true, false);
net.setInput(blob);
// Forward propagate.
vector<Mat> outputs;
net.forward(outputs, net.getUnconnectedOutLayersNames());
return outputs;
}
Mat post_process(Mat &input_image, vector<Mat> &outputs, const vector<string> &class_name) {
// Initialize vectors to hold respective outputs while unwrapping detections.
vector<int> class_ids;
vector<float> confidences;
vector<Rect> boxes;
// Resizing factor.
float x_factor = input_image.cols / INPUT_WIDTH;
float y_factor = input_image.rows / INPUT_HEIGHT;
float *data = (float *) outputs[0].data;
const int dimensions = 85;
const int rows = 25200;
// Iterate through 25200 detections.
for (int i = 0; i < rows; ++i) {
float confidence = data[4];
// Discard bad detections and continue.
if (confidence >= CONFIDENCE_THRESHOLD) {
float *classes_scores = data + 5;
// Create a 1x85 Mat and store class scores of 80 classes.
Mat scores(1, class_name.size(), CV_32FC1, classes_scores);
// Perform minMaxLoc and acquire index of best class score.
Point class_id;
double max_class_score;
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
// Continue if the class score is above the threshold.
if (max_class_score > SCORE_THRESHOLD) {
// Store class ID and confidence in the pre-defined respective vectors.
confidences.push_back(confidence);
class_ids.push_back(class_id.x);
// Center.
float cx = data[0];
float cy = data[1];
// Box dimension.
float w = data[2];
float h = data[3];
// Bounding box coordinates.
int left = int((cx - 0.5 * w) * x_factor);
int top = int((cy - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
// Store good detections in the boxes vector.
boxes.push_back(Rect(left, top, width, height));
}
}
// Jump to the next column.
data += 85;
}
// Perform Non Maximum Suppression and draw predictions.
vector<int> indices;
NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, indices);
for (int i = 0; i < indices.size(); i++) {
int idx = indices[i];
Rect box = boxes[idx];
int left = box.x;
int top = box.y;
int width = box.width;
int height = box.height;
// Draw bounding box.
rectangle(input_image, Point(left, top), Point(left + width, top + height), BLUE, 3 * THICKNESS);
// Get the label for the class name and its confidence.
string label = format("%.2f", confidences[idx]);
label = class_name[class_ids[idx]] + ":" + label;
// Draw class labels.
draw_label(input_image, label, left, top);
}
return input_image;
}
EXTERN_C void NI_EXPORT load_class_list(char *path)
//void load_class_list(const string &path)
{
// outfile.open("D:/afile0.txt");
// outfile << *path << endl;
class_list.clear();
std::ifstream ifs(path);
std::string line;
while (getline(ifs, line)) {
class_list.push_back(line);
// outfile << line << endl;
}
}
EXTERN_C void NI_EXPORT load_net(char* path, int is_cuda)
//void load_net(const string &path,int is_cuda)
{
// outfile << is_cuda << endl;
net = cv::dnn::readNet(path);
if (is_cuda) {
// std::cout << "Attempty to use CUDA\n";
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);
// outfile << "Running on CUDA\n" << endl;
} else {
// std::cout << "Running on CPU\n";
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
// outfile << "Running on CPU\n" << endl;
}
}
EXTERN_C void NI_EXPORT
detect_all(NIImageHandle sourceHandle_src, NIImageHandle destHandle, NIErrorHandle errorHandle, double *time) {
//auto file_logger = spdlog::basic_logger_mt("basic_logger", "D:/basic.txt");
//spdlog::set_default_logger(file_logger);
NIERROR error = NI_ERR_SUCCESS;
ReturnOnPreviousError(errorHandle);
try {
// outfile.open("D:/afile2.txt");
if (!sourceHandle_src || !destHandle || !errorHandle) {
ThrowNIError(NI_ERR_NULL_POINTER);
}
NIImage source_src(sourceHandle_src);
NIImage dest(destHandle);
cv::Mat sourceMat_src;
cv::Mat destMat;
// ni图片转Mat
ThrowNIError(source_src.ImageToMat(sourceMat_src));
// outfile << sourceMat_src.shape << endl;
if (source_src.type == NIImage_RGB32) {
cv::cvtColor(sourceMat_src, sourceMat_src, CV_RGB2BGR);
//outfile << "success" << endl;
// imwrite("D:/haha1.png", sourceMat_src);
}
// cv::imwrite("D:/srcimg.png",sourceMat_src);
outfile << source_src.type << endl;
auto start = chrono::system_clock::now(); // 开始时间
// outfile << "时间" << endl;
vector<Mat> detections;
// detections = pre_process(sourceMat_src);
Mat blob;
blobFromImage(sourceMat_src, blob, 1. / 255., Size(INPUT_WIDTH, INPUT_HEIGHT), Scalar(), false, false);
// outfile << "blob2" << endl;
net.setInput(blob);
// outfile << "blob2" << endl;
// outfile << blob.size << endl;
// Forward propagate.
net.forward(detections, net.getUnconnectedOutLayersNames());
// outfile << "pre_process" << endl;
//推理后的图片处理
Mat cloned_frame = sourceMat_src.clone();
Mat img = post_process(cloned_frame, detections, class_list);
// outfile << "post_process" << endl;
// Put efficiency information.
// The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
string label = format("Inference time : %.2f ms", t);
putText(img, label, Point(20, 40), FONT_FACE, FONT_SCALE, RED);
// outfile << label << endl;
auto end = chrono::system_clock::now(); // 结束时间
*time = getSeconds(start, end);
cv::cvtColor(img, destMat, CV_BGR2RGBA);
// outfile << "success" << endl;
ThrowNIError(dest.MatToImage(destMat));
}
catch (NIERROR &_err) {
error = _err;
}
catch (std::string e) {
outfile << e << endl;
error = NI_ERR_OCV_USER;
}
ProcessNIError(error, errorHandle);
}
//int main()
//{
// // Load class list.
// load_class_list("../coco.names");
//
//
// // Load image.
// Mat frame;
// frame = imread("../sample.jpg");
//
// // Load model.
// load_net("../models/yolov5s.onnx",false);
// //图片推理
// vector<Mat> detections;
// detections = pre_process(frame);
// //推理后的图片处理
// Mat cloned_frame = frame.clone();
// Mat img = post_process(cloned_frame, detections, class_list );
//
// // Put efficiency information.
// // The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
//
// vector<double> layersTimes;
// double freq = getTickFrequency() / 1000;
// double t = net.getPerfProfile(layersTimes) / freq;
// string label = format("Inference time : %.2f ms", t);
// putText(img, label, Point(20, 40), FONT_FACE, FONT_SCALE, RED);
// cout << label << endl;
//
// imshow("Output", img);
// waitKey(0);
//
// return 0;
//}