-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_transformer.py
93 lines (74 loc) · 3.85 KB
/
test_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import random
import os
from data import ImageDetectionsField, TextField, RawField
from data import COCO, DataLoader
import evaluation
from models.transformer import Transformer, TransformerEncoder, TransformerDecoderLayer, ScaledDotProductAttention
from visualize import visualize_grid_attention_v2
import torch
from tqdm import tqdm
import argparse
import pickle
import numpy as np
import time
random.seed(1234)
torch.manual_seed(1234)
np.random.seed(1234)
def predict_captions(model, dataloader, text_field):
import itertools
model.eval()
seq_len = 20
beam_size = 5
gen = {}
gts = {}
with tqdm(desc='Evaluation', unit='it', total=len(dataloader)) as pbar:
for it, (images, caps_gt, _) in enumerate(iter(dataloader)):
images = images.to(device)
with torch.no_grad():
out, _ = model(mode='rl', images=images, max_len=seq_len, eos_idx=text_field.vocab.stoi['<eos>'], beam_size=beam_size, out_size=1)
# print(out.size(), att_map.size())
caps_gen = text_field.decode(out, join_words=False)
for i, (gts_i, gen_i) in enumerate(zip(caps_gt, caps_gen)):
gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)])
gen['%d_%d' % (it, i)] = [gen_i.strip(), ]
gts['%d_%d' % (it, i)] = gts_i
pbar.update()
gts = evaluation.PTBTokenizer.tokenize(gts)
gen = evaluation.PTBTokenizer.tokenize(gen)
scores, _ = evaluation.compute_scores(gts, gen)
return scores
if __name__ == '__main__':
start_time = time.time()
device = torch.device('cuda')
parser = argparse.ArgumentParser(description='Transformer')
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--workers', type=int, default=4)
parser.add_argument('--m', type=int, default=40)
parser.add_argument('--features_path', type=str, default='./X101_grid_feats_coco_trainval.hdf5')
parser.add_argument('--annotation_folder', type=str, default='./m2_annotations')
# the path of tested model and vocabulary
parser.add_argument('--model_path', type=str, default='saved_transformer_models/demo_rl_v5_best_test.pth')
parser.add_argument('--vocab_path', type=str, default='vocab.pkl')
parser.add_argument('--num_clusters', type=int, default=5)
args = parser.parse_args()
print('Transformer Evaluation')
# Pipeline for image regions
image_field = ImageDetectionsField(detections_path=args.features_path, max_detections=49, load_in_tmp=False)
# Pipeline for text
text_field = TextField(init_token='<bos>', eos_token='<eos>', lower=True, tokenize='spacy',
remove_punctuation=True, nopoints=False)
# Create the dataset
dataset = COCO(image_field, text_field, 'coco/images/', args.annotation_folder, args.annotation_folder)
_, _, test_dataset = dataset.splits
text_field.vocab = pickle.load(open(args.vocab_path, 'rb'))
# Model and dataloaders
encoder = TransformerEncoder(3, 0, attention_module=ScaledDotProductAttention, attention_module_kwargs={'m': args.m})
decoder = TransformerDecoderLayer(len(text_field.vocab), 54, 3, text_field.vocab.stoi['<pad>'])
model = Transformer(text_field.vocab.stoi['<bos>'], encoder, decoder, args.num_clusters, len(text_field.vocab), 54, text_field.vocab.stoi['<pad>'], 512).to(device)
data = torch.load(args.model_path)
model.load_state_dict({k.replace('module.',''):v for k,v in data['state_dict'].items()})
dict_dataset_test = test_dataset.image_dictionary({'image': image_field, 'text': RawField(), 'add_text':text_field})
dict_dataloader_test = DataLoader(dict_dataset_test, batch_size=args.batch_size, num_workers=args.workers)
scores = predict_captions(model, dict_dataloader_test, text_field)
print(scores)
print('it costs {} s to test.'.format(time.time() - start_time))