-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
335 lines (281 loc) · 12.1 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os, shutil
import torch
from utils import AverageMeter
from tqdm import tqdm
import torch.optim as optim
import torch.nn as nn
import time
import models.imagenet as customized_models
import torchvision.models as models
from utils import summary
from logger import Logger, savefig
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import pickle
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch, state):
if epoch in state['schedule']:
state['lr'] *= state['gamma']
for param_group in optimizer.param_groups:
param_group['lr'] = state['lr']
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(data_iterator, model, criterion, optimizer, use_cuda):
tqdm_iterator = tqdm(data_iterator)
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for inputs, targets in tqdm_iterator:
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
info = '(Usage:{usage} | Data: {data:.3f}s | Batch: {bt:.3f}s | Loss: {loss:.4f} | top1: {top1: .4f} | top5: ' \
'{top5: .4f}'.format(
usage='train',
data=data_time.val,
bt=batch_time.val,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
tqdm_iterator.set_description(info)
return losses.avg, top1.avg
def val(data_iterator, model, criterion, optimizer, use_cuda):
tqdm_iterator = tqdm(data_iterator)
model.eval()
with torch.no_grad():
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for inputs, targets in tqdm_iterator:
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
info = '(Usage:{usage} | Data: {data:.3f}s | Batch: {bt:.3f}s | Loss: {loss:.4f} | top1: {top1: .4f} | top5: ' \
'{top5: .4f}'.format(
usage='val',
data=data_time.val,
bt=batch_time.val,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
tqdm_iterator.set_description(info)
return losses.avg, top1.avg
def load_model(state, default_model_names, customized_models_names, use_cuda):
if state['arch'] in default_model_names:
if state['pretrained']:
print("=> using pre-trained model '{}'".format(state['arch']))
model = models.__dict__[state['arch']](pretrained=True)
# resnet和densenet的最后一层名字不同
if 'resnet' in state['arch']:
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, state['num_classes'])
elif 'densenet' in state['arch']:
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, state['num_classes'])
else:
print("=> creating model '{}'".format(state['arch']))
model = models.__dict__[state['arch']](num_classes=state['num_classes'])
elif state['arch'].startswith('resnext') or state['arch'].startswith('se_resnext'):
print("=> creating model '{}'".format(state['arch']))
model = customized_models.__dict__[state['arch']](
baseWidth=state['base_width'],
cardinality=state['cardinality'],
num_class=state['num_classes']
)
else:
raise 'model {} is not supported! Please choose model form {}'.format(state['arch'], default_model_names + customized_models_names)
if use_cuda:
if state['arch'].startswith('alexnet') or state['arch'].startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# 输出网络信息
fout = open(os.path.join(state['checkpoint'], 'out.txt'), 'w')
summary(model, (3, state['image_size'], state['image_size']), print_fn=lambda x: fout.write(x + '\n'))
num_params = 'Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0)
print(num_params)
fout.write(num_params + '\n')
fout.flush()
fout.close()
return model
def run(state, model, mean, std, use_cuda):
# 读取数据
# ImageFile.LOAD_TRUNCATED_IMAGES = True
# train_data = TensorDataset(state['data'], 'train', state['size'])
# val_data = TensorDataset(state['data'], 'val', state['size'])
normalize = transforms.Normalize(mean=mean,std=std)
train_transform = transforms.Compose([
transforms.RandomResizedCrop(state['image_size']),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # 将图片转换为Tensor,归一化至[0,1]
normalize
])
val_transform = transforms.Compose([
transforms.RandomResizedCrop(state['image_size']),
transforms.ToTensor(), # 将图片转换为Tensor,归一化至[0,1]
normalize
])
train_data = ImageFolder(state['train_path'], transform=train_transform)
val_data = ImageFolder(state['val_path'], transform=val_transform)
# 存储文件夹和类标的映射关系
output = open(state['checkpoint'] + '/label_encode.pkl', 'wb')
pickle.dump(train_data.class_to_idx, output)
assert train_data.class_to_idx == val_data.class_to_idx
output.close()
print(train_data.class_to_idx, val_data.class_to_idx)
train_loader = DataLoader(
train_data,
batch_size=state['train_batch'], shuffle=True,
num_workers=state['workers'], pin_memory=True)
val_loader = DataLoader(
val_data,
batch_size=state['val_batch'], shuffle=True,
num_workers=state['workers'], pin_memory=True)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), lr=state['lr'], momentum=state['momentum'], weight_decay=state['weight_decay'])
# 杂项初始化
best_acc = 0
title = '' + state['arch']
# 开始训练
if state['resume']:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(state['resume']), 'Error: no checkpoint directory found!'
state['checkpoint'] = os.path.dirname(state['resume'])
checkpoint = torch.load(state['resume'])
best_acc = checkpoint['best_acc']
state['start_epoch'] = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(state['checkpoint'], 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(state['checkpoint'], 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
for epoch in range(state['start_epoch'], state['epochs']):
adjust_learning_rate(optimizer, epoch, state)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, state['epochs'], state['lr']))
train_loss, train_acc = train(train_loader, model, criterion, optimizer, use_cuda)
test_loss, test_acc = val(val_loader, model, criterion, optimizer, use_cuda)
logger.append([state['lr'], train_loss, test_loss, train_acc, test_acc])
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=state['checkpoint'])
logger.close()
logger.plot()
savefig(os.path.join(state['checkpoint'], 'log.eps'))
print('Best acc:')
print(best_acc)
def create_label_decoder():
label_decoder = dict()
txt_path = './datasets/ClsName2id.txt'
f = open(txt_path, 'r', encoding='UTF-8')
lines = f.readlines()
for line in lines:
tmp = line.strip().split(':')
label_decoder[tmp[0]] = eval(tmp[-1])
return label_decoder
def submit(model, state, use_cuda, mean, std):
pkl_file = open(state['checkpoint'] + '/label_encode.pkl', 'rb')
label_encoder = pickle.load(pkl_file)
label_encoder = {v: k for k, v in label_encoder.items()}
label_decoder = create_label_decoder()
checkpoint = torch.load('checkpoint/model_best.pth.tar')
model.load_state_dict(checkpoint['state_dict'])
model.eval()
image_names = os.listdir(state['test_path'])
result = open('classification.txt', 'w')
def image_transform(image, image_size, mean, std):
resize = transforms.Resize(image_size)
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize(mean, std)
transform_compose = transforms.Compose([resize, to_tensor, normalize])
return transform_compose(image)
with torch.no_grad():
for image_name in tqdm(image_names):
img_path = os.path.join(state['test_path'], image_name)
img = Image.open(img_path).convert('RGB')
img = image_transform(img, state['image_size'], mean, std)
img = torch.unsqueeze(img, dim=0)
if use_cuda:
img = img.float().cuda()
else:
img = img.float()
pred = torch.softmax(model(img), dim=1)
pred = torch.squeeze(pred, dim=0)
pred = pred.detach().cpu().numpy()
label_pred = np.argmax(pred)
label_ = label_encoder[label_pred]
label_true = label_decoder[label_]
result.write(image_name + ' ' + str(label_true) + '\n')
result.flush()
result.close()
if __name__ == '__main__':
label_decoder = create_label_decoder()
print(label_decoder)